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INTRODUCTION

The scientific goal of the experiment is to test the equality of gravitational and inertial

mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate

of fall of bodies from the composition of the falling body. The measurement is

accomplished by measuring the relative displacement (or equivalently acceleration) of

two falling bodies of different materials which are the proof masses of a differential

accelerometer. The goal of the experiment is to measure the E6tv6s ratio 6g/g

(differential acceleration/common acceleration) with an accuracy goal of several parts in

1015. The estimated accuracy is about two orders of magnitude better than the present
state of the art.

The main goal of the study to be carried out under this grant is part of the flight definition

of the experiment and laboratory testing of key components. The project involves an
international cooperation in which the responsibility of the US side is the flight definition

of the experimental facility while the responsibility of the non-US partners is the flight
definition and laboratory prototyping of the differential acceleration detector.

In summary, the experiment to be designed is for taking differential acceleration

measurements with a high-sensitivity detector (the sensor) during free fall conditions

lasting up to 30 s in a disturbance-free acceleration environment. The experiment
strategy consists in letting the sensor free fall inside a few meters long (in the vertical

direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere

after release from a helium balloon flying at a stratospheric altitude.

DESCRIPTION OF EXPERIMENT CONCEPT

Need for Picogravity Environment

The accuracy of the Weak Equivalence Principle (WEP) tests with laboratory proof

masses on the ground is limited by the Earth's seismic noise and the weakness of suitable

signal sources. Previous experiments include the famous torsion balance experiments of
E6tv6s (1890-1922y " as well as the classical tests of the Equivalence Principle by Roll-

Krotkov-Dicke (1964y _ utilizing a torsion balance which had an accuracy of 3 parts in

1011 and the I.I. Shapiro et al. (1976) iVand Williams et al. (1976) Vlunar laser ranging

experiment with an accuracy of 3 parts in 1012. The present state of the art is at a few

parts in 10 _3both for lunar laser ranging tests (Williams et al., 1996) vi and for torsion

balance tests (Adelberger et al., 1999) V".

By conducting the experiment in free fall, the signal strength increases by about three
orders of magnitude because the full strength of the Earth's gravity is sensed in free fall.

Seismic noise is also absent in free fall. Seismic noise is replaced in orbit by the noise

sources of the space environment which require drag free stages or drag compensation in

order to achieve the promised improvements in the test accuracy. An orbital free fall,

with a "drag-free" satellite, is one approach that has been under development for many

years. A small number of orbital tests of the WEP has been proposed with estimated

7



; 10-1_viii 10-18xaccuracies o , 10 -17ix, and . An alternative to the free fall in space is the

vertical free fall inside a drag-shielding capsule released from a balloon at a stratospheric
altitude as proposed in this experiment _.

An orbital free-fall has advantages and disadvantages with respect to vertical free fall. On

the one hand, orbital free-fall tests can achieve an even higher accuracy than vertical free-

fall tests thanks to the longer integration time and lower resonance frequency of the

detector. On the other hand, vertical free fall tests have some key advantages over orbital

tests. First of all, in a vertical free fall (from a balloon) the experiment can be repeated at

relatively short intervals of time (a few weeks) and at a more affordable cost. The ability

to repeat the experiment is important for the success because these high-accuracy
differential detectors can not be tested on the ground at the accuracy that they can achieve

in free fall conditions. Therefore, modifications and improvements have to be expected

before the detector/experiment performs at the estimated free-fall accuracy.

Both orbital and vertical free fall are Galilean experiments in which the differential
displacement or rate of fall or acceleration is measured between two bodies of different

materials falling in a gravitational field. However, classic Galilean experiments, in which

the relative displacement of two bodies falling side by side is measured (with drops
ranging from lm to 140m) have yielded an accuracy 'ai in testing the WEP of order 10-1°.
The limitation mostly stems from relative errors in initial conditions at release which

propagate over time due to gravity gradients. This problem can be overcome in orbital

and long vertical free falls (i.e., from stratospheric heights) thanks to two provisions: (1)

the initial relative motion of the two sensing masses inside the detector is abated during a
damping phase preceding the measurement phase and (2) the detector is rotated with

respect to the gravity field in order to modulate the signal (at a frequency fs) and move

the frequency of key gravity gradient components to 2fs.

The test of the Equivalence Principle requires a differential measurement of acceleration.

This fact has a positive consequence in terms of the rejection of accelerations that affect

the two proof masses equally (common-mode type) and their effects on the differential

acceleration. Typical values of the common-mode rejection factor of differential

accelerometers are of order 104. Consequently, for an experiment that aims at measuring

differential acceleration of order 1015 g, the common-mode acceleration perturbations
external to the detector must be of order 1012 g or less.

Drop Facility

The following is a preliminary description of the drop facility the design of which will

evolve as a result of the analyses carried out during the flight definition phase. The free
fall facility (see Fig. 1) consists of: (1) the gondola that stays attached to the balloon; (2)

a leveling mechanism that keeps the capsule vertical before release; (3) the capsule,
which houses a large vacuum chamber/cryostat; (4) the instrument package which free

falls inside the cryostat and contains a small, high-vacuum chamber which in turn houses

the detector; and (5) the parachute _stem to decelerate the capsule at the end of the free
fall run.



Thecapsuleis keptverticallyleveledandstabilizedin azimuthby thegondolabefore
release.Uponreachinganaltitudehigherthan40km, thecapsuleis releasedfrom the
gondolaandimmediatelyafterwards(< 1s) theinstrumentpackageis releasedfromthe
topof thecapsule.Theanalysisindicates(seelateron) thatwitha 1-3m longvertical
spaceavailableinsidethecapsule,theinstrumentpackagewill spanthatspacein 25-30s
while thecapsule,thatis slightlydeceleratedbytherarefiedatmosphere,falls bya few
km over thesametime. Thecapsuleshieldsthe instrumentpackagefrom external
perturbationsandallowsit to freefall underaccelerationconditionswhicharecloseto
ideal. Thedifferentialaccelerationbetweenthe two falling testmassesis measured
duringthefreefall time. At theendof thefree-fallrunthecapsuleisdeceleratedby a
parachutesystemfor recoveryin wateror,alternatively,overland.

Small

Cryostat

Spin axis

Sensitive axis

Large

vacuum
chamber

Detector

release

mechanism

Instrument

package with
detector

Figure 1 Pre-definition-study configuration of capsule in free fall after detector release

Detector Concept

The following is a preliminary description of a differential acceleration detector concept,

the design of which (carried out in cooperation with our non-US partners) will evolve as
a result of the analyses conducted during the flight definition phase.

The detector that we plan to use for the experiment is a differential accelerometer

that will be developed at the Institute of Space Physics (IFSI) in Rome (Italy), under the

sponsorship of the Italian Space Agency in the framework of the participation in this
project of non-US investigators (with V. lafolla, PI). This detector technology xii_ has

been pioneered by V. Iafolla and the late F. Fuligni and applied to the construction of a

number of high-sensitivity, low-frequency accelerometers over several years. In the
following we give a brief description of the detector conceptual design at this stage of the

project.



The differential-acceleration detector (see Fig. 2) measures the relative displacement, 
along the sensitive axis, between two sensing masses of different materials. The centers 
of mass of the sensing masses are made to coincide within the attainable values in order 
to minimize the effect of gravity gradients, rotational motions and linear accelerations 
upon the differential output signal. 

Figure 2 Longitudinal section of conceptual instrument and sensing masses. 

The two sensing masses are constrained by torsion springs to rotate independently 
about the twist axis (which is parallel to the spin axis of the instrument) and their 
resonant frequencies are electrostatically controlled for frequency matching. The 
displacements generated by the rotations are sensed by the capacitive pick-ups of the 
instrument as explained later on. Sensing mass 1 (in dark color) is a hollow cylinder 
mostly made of a given material while sensing mass 2 (in light color) is a dumbbell- 
shaped cylinder made of a different material. Each sensing mass constitutes the moving 
part of a capacitor with symmetric fixed plates on either side of the sensing mass (see 
Fig. 3). Capacitor 1 is formed by sensing mass 1 and the fixed plates marked A and B 
while capacitor 2 is formed by sensing mass 2 and the fixed plates marked C and D. The 
fixed plates A and C are used for signal pick-up and the fixed plates B and D for feed- 
back control. The displacement of sensing mass 1 ,  for example, is detected by the series 
capacitances As (one fixed plate on each side of the sensing mass). These plates form one 
branch of a capacitive bridge in which two additional reference capacitors form the other 
branch. The bridge is pumped by a quartz oscillator at a stable frequency of 10-20 kHz. 
reducing the relevant noise temperature of the preamplifier. The difference between the 
output signals from capacitors 1 and 2 is amplified by a low-noise preamplifier, sent to a 
lock-in amplifier for phase-detection. and then to a low-pass filter. 

The cross sections of the ellipsoids of inertia about the spin axis of the instrument are 
circular so as to minimize, within the construction tolerance, the mass-moment torquesA”. 
In the detector shown in Figs. 2 and 3, the inner cylindrical mass is made mostly of a 

I O  



. 
high-density material (e.g., Platinum-Iridium) while the outer dumbbell-mass is made of 
a low-density material (e.g., Aluminum). 

Figure 3 Interior of conceptual differential acceleration detector. 

In order to achieve an experimental accuracy of several parts in 10" in 25-30 s 
integration time, the detector must have an intrinsic noise (expressed in terms of 
acceleration) of about IO-]' g/Hz"'. Earlier analyses indicate that this level of noise is 
attainable with an instrument refrigerated to a temperature close to that of liquid Helium 
and with state-of-the-art low-noise preamplifiers. 

Experiment Sequence and Communication Links 

Figure 4 shows the preliminary timetable of the experiment sequence. The 
experiment starts with the loading of the sensor into the vacuum chamber/cryostat about 
2 weeks before the planned launch. This operation is then followed by the pumping 
down of the chamber and the refrigeration of the sensor. After connecting the capsule to 
the gondola and the balloon, the balloon is launched. The estimated time to reach altitude 
is of order 3 hours. Upon reaching altitude, the attitude of the capsule is stabilized by the 
leveling mechanism attached to the gondola, the sensor is spun up, and the dynamics of 
the system is analyzed. When the dynamics is within the acceptable bounds, the capsule 
is released from the gondola and the sensor is released from the top of the 
chamber/cryostat immediately afterwards. The science data is taken during the free-fall 
phase in which the sensor spans the length of the chamber. Shortly after the sensor has 
reached the bottom of the capsule, the blut (first stage of the deceleration system) is 
released and, when the speed has decreased below the required value, the parachute is 
deployed. The chamber is vented before the capsule hits the surface/water and the 
locator beacon is turned on. 
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Event

Mount Sensor in Chamber
Close Chamber

Pump Down Chamber
Chill Sensor
Connect to Balloon
Launch

Rise to Altitude

Study Dynamic conditions
=Spin up Sensor

Check out full comm path

Prelaunch
T-2wks T-1Day Launch

To Float
T+30m T+60m T+90m T+120m T+150m T+180m

Release Capsule
Release Sensor
Take Data

Sensor at Bottom of Capsul_

Release Measurement
R+ls R+2s R+10s R+20s R+25s i R+30s

Release Blut

Fall under Blut Drag
Release Main Chute

Fall under Chute Drag
Vent Capsule

Isolators
Turn on Locator Beacons
Touchdown
Valve down balloon

Post Measurement Fall
R+40s R+70s R+100s R+130s R+150s R+TBD

Figure 4 Preliminary timeline of experiment

Figure 5 is a schematic of the communication system between the ground, the

gondola and the capsule through radio links and the communication between the sensor

(during free fall) and the capsule through an infra-red link.
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JRadio to Ground Ground

_Sensor

Figure 5 Schematic of communication links.
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ANALYSIS OF FREE FALL PHASE

The free fall time of the instrument package inside the capsule can be computed after

considering that the capsule is slowly decelerated by the air drag while the instrument

package (after release) moves inside the vacuum chamber at low relative speed and
consequently it is unaffected by air drag (it is indeed in free-fall conditions).

Free fall time

The free fall time and vertical size of the vacuum chamber/cryostat can be computed

from the equations of motion of the instrument package in free fall and the capsule in
decelerated fall. The equations of motion are as follows:

_=g

--g-  -L-cos 
zm_

(1)

where z is the vertical distance from the time of release (the subscript 1 stands for

instrument package and 2 for capsule), S is the frontal cross section of the capsule, Co the

air drag coefficient of the capsule and p = f(h) is the air density with h the altitude above

the Earth's surface. Equations (1) can be solved analytically only if CD is assumed

constant and the atmospheric density exponential. We will not spend time on the analytic

solution because it is valid only for relatively-short drops.
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Figure 6 Atmospheric density in the stratosphere per US Standard Atmosphere 1976
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After adoptingadensityprofile fromtheUSStandard1976AtmosphericModel(as
showninFig.6) theexponentialfit of thedensityfor thealtitudesof interestis:

p = poe-h / H (2)

Where H is the scale height, P0 is the reference density which is taken at the Earth's
surface and h the altitude above the Earth's surface. The relative distance can be

obtained as the double integral of the acceleration difference between the capsule and the

instrument package 6_,= _ - _ which is equal to the deceleration of the capsule due to

aerodynamic drag:

l Po -(z-ho )/H 2.2_,= --me S • (3)

where [3 = m/(CDS) is the frontal ballistic coefficient of the capsule, hD is the drop

altitude, z _- (l/2)gt 2 the distance traveled by the capsule and g the Earth's gravitational

acceleration. The drop velocity of the capsule is assumed equal to the free fall velocity gt

only for the purpose of computing the air drag deceleration (which is a valid

approximation at high altitudes).

The air drag coefficient Co is fairly constant in the non-compressible regime but then

it grows substantially with the Mach number for speeds approaching the transonic regime
as shown in Fig. 7 for an aerodynamically-shaped cylinder with fineness ratio D/L = 8

0.25. The Mach number M is the ratio between the actual speed of the capsule and the

speed of sound at the local altitude:

V
M = _ (4)

4yRT

where R = 287 J/(kg-K) is the gas constant of air, T the local air temperature and y _ 1.4.

The Mach number vs. the drop time is shown in Fig. 8 together with the drop distance vs.
time.

As a result of the functional dependence CD = f(Mach), we can separate the ballistic

coefficient into two components as follows:

where [3o= m/(CDoA) is the low-speed ballistic coefficient (i.e., its minimum value) and

A_ is the fractional variation of the ballistic coefficient due to the increase of the Mach

number.
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Figure 8 Mach number and capsule drop distance vs. time

After taking into account the functional dependence Co = f(Mach) and integrating
eqn. (3) twice for different values of the ballistic coefficient, we obtain the numerical

results shown in Fig. 9, for a fineness ratio 5 _- 0.25, a drop altitude of 40 km and a (low-

speed) ballistic coefficient 130ranging from 2000 kg/m 2 to 10000 kg/m 2.
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The numerical results clearly indicate that it is possible to attain a free fall time between

25 s and 30 s with very reasonable lengths of the chamber and capsule. Appropriate

values of the (low-speed) ballistic coefficient in the range of greater interest of 6000-

10000 kg/m 2 can be readily obtained with capsule masses <1500 kg and external

diameters smaller than 1.8 m. Designs options will be investigated later on in this report.
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Figure 11 Limit velocity and actual velocity of capsule vs. altitude (130= 6000 kg/m 2)

For completeness the deceleration of the capsule caused by air drag is shown in Fig. 10
for 130= 6000 kg/m-'. Figure I 1 depicts the limit velocity and the capsule actual velocity

vs. altitude for the same case. The limit velocity is the velocity at which the gravitational

and air drag force are equal and, consequently, for a limit velocity much greater than the
actual velocity the air-drag deceleration is very small.

Effect of Wind Shear

The horizontal velocities of the capsule and the instrument package (attached to the

capsule) are the same at the start of the fall. The inertial horizontal velocity is determined

by the rotational velocity of the Earth at the latitude of capsule release and by the local

wind. The former (which is much bigger than the latter) simply makes the falling bodies
follow a parabolic trajectory rather than a fall along the local vertical. The maximum

lateral displacement is of order a couple of hundred meters over a fall distance of 4.4 km

which is consistent with a 30-s fall time. It is also worth pointing out that this lateral

displacement does not generate any acceleration on board because the displacement is

due to an initial non-null velocity and not to external acceleration acting on the falling
body.

The diameter of the capsule is important for tolerating vertical gradients (wind shear)
of the lateral wind without the need for a propulsion system to compensate for their

effect. The balloon will move at the speed of the local wind once the floating altitude has

been reached, i.e., the capsule will be at zero relative speed with respect to the local wind.

If the wind vertical profile were constant, the capsule and the instrument package would

move laterally during the fall with the same initial lateral velocity and hence maintain the

same lateral distance with respect to one another. But, if the wind vertical profile
changes, the capsule will experience a lateral force that will change its lateral speed while

the instrument package will not experience such force.
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The lateral displacement y of the capsule due to the wind shear V z

vertical drop distance (Z = 1/2gt 2) is as follows:

1 _Z3v. 2
Y _ Z

30fit g

= 0V/0z over the

(8)

where p is the atmospheric density, 1_1 _-_ Irl/(CDISI) is the lateral ballistic coefficient of the

capsule, SI the lateral area of the capsule, and g the Earth's surface gravity. Equation (8)

is simplified because the atmospheric density has been assumed constant over the drop.

The equation, however, provides a good estimate of the lateral displacement of the
capsule due to wind shear after adopting the average value ff of the density along the

drop. After calling S the frontal area of the capsule and assuming that CDI = 10CD, Sj

3S/(Tt_)), which are valid in approximation for a cylinder with aerodynamically-shaped

nose and tail, we can relate the lateral ballistic coefficient to the frontal (low-speed)
ballistic coefficient as follows:

_6

fll =-_flO (9)

Consequently, eqn. (8) yields:

1 _Z 3
y -- V.z (10)

mSfl0 g
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Figure 12 Lateral displacement due to wind shear vs. [30
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For/_= 6xl03 kg/m3(i.e.,averageatmosphericdensitybetween40km and35km of

altitude), V z = 0.005 sr, and _ = 0.25, we obtain the results shown in Fig. 12. The

accuracy of eqns. (8) and (10) was also checked through numerical integration of the
equation of lateral motion after assuming an exponential air density profile. The

displacement error is less than 5% by using the average density value. The value adopted

for the wind shear of 0.005 s_ is equivalent to a vertical gradient of l0 knots per km.

This value is twice as high as the maximum wind shear reported xv for the Air Force
balloon base at Holloman, New Mexico.

The lateral displacements due to wind shear are relatively small for rather

conservative values of wind shear, free-fall times and ballistic coefficients greater than
6000 kg/m 2, which are easy to obtain. These results show that there is no need for a

thruster system to compensate for the effect of the lateral wind acting on the capsule.

The geometry and mass of the capsule can be chosen in a way to accommodate the

presence of wind shear. Furthermore, if the balloon is launched during the periodically-

occurring wind reversal times (in April-May and September-October) the vertical wind
gradient is much smaller than the value adopted for the computations shown here.

The capsule displacement due to wind shear has to be taken into account when computing

the internal diameter of the capsule (where the instrument package falls). However, it

will be shown later on that other factors (e.g., gravity gradients) are more important in
determining the capsule internal diameter.

20



SCIENCE CONCEPT ANALYSIS

The error analysis has been extended with respect to what is reported in Ref. xvi to

include a thorough analysis of the gravity gradient generated by the distributed mass of

the capsule, the concentrated masses on board the capsule, and the Earth's mass for

generic positions and orientations of the sensor. The acceleration noise inside the capsule
has also been revisited after considering that in the new reference design (see later on) the

chamber is fully cryogenic. The intrinsic noise components of the detector (Brownian

and preamplifier noise) were also recomputed based on new information from the IFSI

laboratory. As a results of these new analyses, requirements have been derived for: (a)

the mass distribution of the capsule; (b) the tolerable mass and location of equipment on

board the capsule; (c) the orientation of the sensor during free fall and the centering of the

two sensing masses; and (d) the characteristics parameters of the detector that affects its
intrinsic noise level.

Acceleration Noise inside Capsule

The experimental package moves at very low speed inside the capsule. Consequently,

the residual gas inside the vacuum chamber produces a minute force on the free-falling

package with a frequency content centered at f = 1/tf s _ where tr is the free-fall time. This

gas thus affects the acceleration of the instrument package in a frequency range well
removed from the signal frequency. The acceleration, as a function of pressure inside the
chamber, is as follows:

ao = C_'A V n_2r (11)
2m RT

where A and m are the frontal area and mass of the instrument package, respectively, V

is the maximum velocity of the instrument package with respect to the falling capsule, R
is the gas constant, T the temperature of the residual gas, and p the pressure inside the

chamber. Because of the new reference design (see later on) with a fully cryogenic

vacuum chamber, the residual gas in the chamber is refrigerated Helium. After assuming

CD = 2.2 (for a free-molecular regime), A = 0.1 m 2, m = 30 kg, V = 0.5 m/s (obtained by

integrating eqn. 3 once up to 30 s), R = 2078 J/(kg-K), T _ 5 K, and p = 10.6 mBar, eqn.
(11) yields aD = 10 -12g. The spectrum of this acceleration is centered at a frequency

0.033-0.05 Hz for free-fall times tf in the range 20-30 s. Consequently, the magnitude of

the acceleration at the signal frequency fs, which is in the range 0.2-0.5 Hz, is well
smaller than 1012 g. This acceleration is a common-mode acceleration which is further

reduced by the common-mode rejection factor (CMRF) of order 10-_.

Furthermore, the vacuum strongly attenuates the propagation of perturbations from the

walls of the capsule to the free-falling instrument package. The estimate of the

acceleration at the falling instrument package produced by the vibrating walls of the
capsule are based on the experimental data measured on board the system Mikroba%

This system shares the fall from a stratospheric altitude: it is not, however, a free-falling

experimental package inside the shielding capsule. In Mikroba, the measurement

21



packageor experimentis solidlyattachedto thewallsof the falling capsule. Moreover,

Mikroba is not propelled during the first 30 s (like our experiment) although it is
propelled downwards during the next 30 s. Once the magnitude of the acceleration at the

walls lawa.I is known, the magnitude of the acceleration at the falling package lal can be

readily computed as explained in the following. The motion of the vibrating walls
increase the kinetic energy of the gas molecules above the thermal velocity. The kinetic

energy variation is then expressed as a pressure variation Ap of the gas after equating the

increase in kinetic energy to the work done on the gas molecules by the vibrating walls.
We then assume, conservatively, that the pressure perturbation Ap acts on one side only

of the instrument package in order to compute an upper bound of the acceleration
disturbance imparted to the package. The upper bound of the acceleration at the

instrument package is as follows:

lal -- APluwaltl = Ap lao. I (12)
my mwv
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Figure 13 Acceleration measured on board the Mikroba capsule (with accelerometer

solidly attached) during the fall [Kretzchmar, 1999]

In equation (12), A and m are the cross section and mass of the instrument package, v

is the thermal velocity of the residual gas, a and a,,,,, are the accelerations of the package

and the wall, respectively, p is the pressure inside the capsule, uwa, = a_._J(o is the velocity
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and(o the angular frequency of the vibrating walls. If, for example, p = 10_' mBar and the

temperature of the gas inside the capsule is slightly higher than LHe, we obtain an
attenuation factor a/awa, = 6x10 "_ at the signal frequency of our experiment (--0.5 Hz). In

other words, the high vacuum provides an excellent attenuation of the wall vibrations.
Moreover, the capsule walls do not necessarily vibrate at the signal frequency of the

instrument. The cryostat will be designed with structural frequencies much higher than

the experiment signal frequency. However, in this early stage of the design and for
conservativeness, we assume that the wall acceleration has a component at the signal

frequency with an intensity equal to the largest magnitude of the acceleration recorded on

Mikroba during the first 30-s of fall, that is, aw,n < 10 -4 g (although not very visible in Fig.
13). We then obtain an acceleration at the instrument package of order 10 13 g under

rather conservative assumptions. Consequently, the free-falling capsule reduces the

acceleration noise to values unmatched by any other Earth-based drop facility and

comparable to values achieved on board the Triad drag-free satellite xvi".

The acceleration components above are common-mode-type (i.e., they affect equally both

sensing masses) thus they can be further reduced by the common-mode rejection fact of
the differential acceleromcter. With a typical value of i0 -4 for the CMRF, the influence

of these accelerations on the differential measurement is made negligible.

The acceleration noise components produced by the residual gas in the capsule are

proportional to the pressure inside the capsule. The pressure can be reduced in
successive flights if, for any unanticipated reasons, its influence on the measurement

proves to be greater than expected. It is, in fact, well within the state of the art to obtain

pressures at room temperature as low as 10 .8 mBar in large volumes.

Internal noise of detector

The most important internal noise sources for a high accuracy mechanical detector like

the one proposed for this WEP test are: (1) preamplifier noise; and (2) thermal noise
(Braginsky, 1974xix; Giffard, 1976xx). The combined effect of these two noise

components upon the acceleration spectral density Sa of the detector's output is given by

the following equation for an instrument with the measurement frequency smaller than

the resonant frequency 030, a measurement bridge pumped at the frequency 03p (of

typically tens of kHz) and a preamplifier that matches the transducer impedanceXX_:

In equation (13), the two terms in round parentheses correspond to the Brownian noise

and the preamplifier noise, respectively; 030 is the detector resonant frequency; kB the

Boltzmann's constant; T the ambient temperature; Tn the preamplifier noise temperature;

Q the quality factor; meff the effective mass of the sensing mass; and _. the

electromechanical transducer factor. The effective mass is used to convert a rotation of

the sensing mass into a translation of equal energy. Its relationship to the mass m is: meff
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= m(rh//)2 where qt and I are, respectively, the radius of inertia and the lever arm with

respect to the rotation axis of the sensing mass. With the geometry of the sensing masses
in our detector meff = 1.8m.

Clearly, from eqn (13), we see that the sensitivity of the detector increases by
decreasing the resonant frequency and the temperature, and by increasing the mass of the

sensing masses and the Q-factor. Liquid He (4.2 K) refrigeration will be used to provide

low Brownian noise and a high Q-factor. These are necessary conditions to achieve the

desired measurement accuracy. In order to derive requirements for the detector, we

assume that the contribution of the Brownian noise is about equal to the contribution of
the preamplifier noise. In this case, if we set our experiment accuracy goal to several

parts in l0 ts (with 95% confidence level and a 20-s integration time) each one of the two

noise components should be about 10-14 g/_[-_ or smaller. These noise requirements

imply the following (see also the section on Requirements Development):

T < 10 K; T, < 60 mK; m > 2 kg; oJ0/Q < 6Jr/10 s rad/s (14)

These requirements do not exceed the state-of the-art but they do require a very

careful construction of the detector with low dissipation and the use of very-low-noise

preamplifier. Key quantities like the Q-factor at low temperature and the preamplifier

noise will be measured experimentally by our partners at IFSI once a prototype
laboratory detector is built and operated at LHe temperature. Noise contributions other

than the intrinsic noise components of the detector should be kept at a lower level in
order to make them smaller than the intrinsic noise.

Gravity Gradients

Capsule Gravity Gradients

The gravity gradients generated by the distributed mass of the chamber/cryostat and
their effects on the differential measurement are analyzed in the following for a generic

position of the detector inside the capsule and a generic orientation of its spin axis with
respect to the gradient field.

Gravity gradient for a mass distribution with cylindrical symmetry

For a mass distributed with cylindrical symmetry, the resultant gravitational
acceleration has two components:

az= acceleration component along the cylinder axis

aT= acceleration component along the cylinder radius
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Figure 14 Reference frames for gravity gradient analysis

After erecting a Cartesian reference system xyz as depicted in Figure 14, the

components of the gravity gradient tensor are computed according to the following
transformation formulas:

dx = cos(0)" dr - r "sin(O)" dO

dy -- sin(O)" dr + r" cos(0)" dO

da x -- cos(0)" da r - a,. •sin(O)" dO

dav = sin(O)" da r + a,. • cos(0)- dO

(15)

Setting 0 = 0 and indicating the spatial derivative with a second subscript:

a x _ a r

ay _0

and

a xx -- a .r

aK,. = 0

a,_ = o r / r

axz =azx =a=

ay: =a_,... =0

Hence the gravity gradient tensor has the form:

[_ 0 a,_a,./r 0

[a,_ 0 a=

(16)

(17)
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As a result of the Laplace equation, the trace of the gravity gradient tensor is equal to
zero, that is

arr + a r [r + azz = 0 (18)

In the singular case of r = 0 the limit calculation yields:

F(r-_0j = 0ar_ 0

0 --2a_r

(19)

Gravit), gradient matrix of a rotating body

In general a gravity gradient matrix has the form:

F
(20)

The rotated matrix r" after a 0 = o_t rotation is:

F©= RoFR / (21)

where R 0 is the rotation matrix and R0r its transpose.

After a rotation about an axis (i.e., thc x axis), thc rotated matrix has four components

modulated at to, four components modulated at 2to and one component that is not
modulated.

The o-modulated components of the transformed matrix are:

F;2 = _l = Fxz sin(co- t) + F_. cos(o_, t) (22.1)

1"1'3= F_ 1= Ix: cos(w- t) - F,o, sin(_o- t) (22.2)

where the rotated axes are labelled x' = 1, y' = 2, z' = 3. In summary, the off-diagonal

components F'I2 = F'2, and F'_3 = F'3j of the gravity gradient matrix produce components
that are modulated at the rotation frequency.
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Gravity gradient matrix projected onto body axes

In a general case the body reference frame placed at the CM of a sensing mass of the
detector can be identified with respect to the cryostat frame by means of 3 successive
rotations as follows:

1 - Rotation +ct around z axis (azimuth rotation)

2 - Rotation +13around y' axis (elevation rotation)

3 - Rotation +tot around x" axis (spin rotation)

In the computation of gravity gradients, these rotations can either be rotations of the
sensing mass with respect to the cryostat or, equivalently, rotations of the cryostat with

respect to the sensing mass. In the former case, and solely for the reason of pointing out

a typical geometrical situation, the first and second rotations could, for example, be

caused by the detector dynamics during free-fall (e.g., precession of its body axes) while
the third rotation is the tot rotation of the detector about its longitudinal axis aimed at

modulating the signal.

Clearly, we are mostly concerned about the components of the gravity gradient matrix
that contain a frequency to equal to the modulation frequency of the signal. We can

choose the body axis y' = 2 to coincide with the sensitive axis of the accelerometer and,

consequently, we are only concerned with the component F'2_ of eqn. (22.1). In general,

the moduli of the two components F'_2 and F'13 are the same and they can be written as
follows:

X -- _/F:o.2 + Fx:2 (23)

After rotating the original matrix by two rotations c_ and 13(where ct is the azimuth of the

spin axis with respect to the radial and [3 is the elevation with respect to the capsule

equatorial plane) the expressions of F_y and Fx, in eqn. (23) are as follows

F.,: = k I sin(/3) sin(a) - k 2cos(/3) sin(2a) (24.1)

Fx: -- k3sin(2/3) + k Icos(a)cos(2/3) + k 2 sin(2/3)COS 2 (a) (24.2)

k I = ax: (24.3)

1

k 2 = _ (ax.,. - ayy ) (24.4)

1

k3 = -_(ay:, - azz) (24.5)
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wherethea_jarethematrix components before the rotations are carried out. In the case of

a body with cylindrical symmetry and for cylindrical coordinates, eqn. (16) yields ax_ =

a,, ayy= a,/r, a= = a,_, a_z= a_ and the other components are null.

After carrying out a numerical analysis of eqns. (24) and taking into account that

inside a cylinder k 2 is always at least one order of magnitude less than kl and k 3, we find
that the maximum value for X occurs for ct = 0 (where a is the azimuth). This result

implies that the maximum disturbance of the capsule gravity field on the differential

accelerometer is produced when the capsule moves radially with respect to the sensor
(see Figure 15) in such a way that the spin axis is oriented along the radius of the cylinder

through the sensor and the capsule has been displaced radially with respect to the sensor
(e.g., by wind shear).

Figure 15 Geometry of sensor and capsule (viewed from the top) for strongest gravity
gradient affecting the measurement

On the opposite end, if the motion of the capsule is such as to keep ct close to 90 °,

that is the spin axis is orthogonal to the radial, the disturbance is minimum. In any case

since the translational motion of the capsule is not predictable nor controlled, the worst

condition is analyzed setting ct equal to zero and varying the angle 13. After doing so

eqns. (23) and (24) yield:

X -- (ks + kz)sin(2fl) + kj cos(2fl) (25)

Equation (25) summarizes the disturbances induced by the cryostat mass modulated

at the measurement frequency. This equation is important for the cryostat/capsule design.

The variations of the quantities k,, k2, k 3 inside the cryostat for different shapes and sizes
are analyzed numerically in the following subsection.

Variation of kl, k2, k3 in the cryostat/capsule

A numerical code has been developed in Matlab to compute the gravity gradient

matrix inside a distributed, massive cylinder. The program, which uses a very large (of
order 104) number of mass points, can map the desired components of the gravity

gradient matrix inside the enclosed surface. The code has been applied to a number of
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cylinderswithdifferentH/D ratios (whereD is the diameterand H theheight)and
differentshapesof caps.Eachruntakesacoupleof hoursonaPentiumIII PC.

Cylindrical cryostat without caps

We first analyzed the gradient field for various cases of cylinders with various H/D

(height over diameter) ratios to conclude that the gradient field is strongly reduced (for
the components of interest) for H/D > 1

The following results are for a cylinder of uniform mass distribution with the following
characteristics:

Cylinder mass = 500 kg; Dimensions: 1 m (dia) x 1 m (height)

z

b x.=r

Figure 16 Schematic of cylinder and reference frame

Vertical profiles at r = 0 (along centerline)
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Figure 17 All components of gravity gradient along a vertical profile at r = 0 (units are
frz= mar_ in kg/s-" = s-" for 1-kg test mass)
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Verticalprofiles at r = 10 cm

4.0x10 8

3.5

3.0

2.5
ii

2.0

1.5

-0.4 -0.2 0.0 0.2 0.4

z(m)

2d

Id.

4.0x10.8 _

3.5-

3.0-

2.5-

2.0-

1.5-

IlilllllUlllinllll Illlli Ill IIIlUUlll IIIIIUlIIIIIIII

-0.4 -0.2 0.0 0.2 0.4

z(m)

N
N

I.k

-3 "

-4 -

-5 -

-6 '

-7"

-8xl 0-8-

-0.4 -0.2 0.0 0.2 0.4

z(m)

(continued)

31



1.0x10 "s

<_ 0.5

_ 0.0

-0.5

-1.0

-0.4 -0.2 0.0 0.2 0.4

z(m)

Figure 18 All components of gravity gradient along a vertical profile at r = 10 cm (units
are frL= ma_ in kg/s 2 = s2 for l-kg test mass)

Vertical profiles at r = 20 cm
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Figure 19 All components of gravity gradient along a vertical profile at r = 20 cm (units

are f_ = ma_, in kg/s 2 = s2 for 1-kg test mass)
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Vertical profile at r = 30 cm
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Figure 20 All components of gravity gradient along a vertical profile at r = 30 cm (units
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Figure 21 All components of gravity gradient along a vertical profile at r = 40 cm (units
are frz= ma= in kg/s 2 = s-2 for l-kg test mass)
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Q

The following is a contour plot of the k, component inside the cylinder and the radial

profiles of this component along radii at various distances from the cylinder's equatorial

plane.
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Figure 22 Contour plot of capsule gravity gradient component k_ = a_z (s2) for a cylinder
with H/D = l-m/1-m
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z = 30 cm above cylinder's equatorial plane
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Figure 23 Gravity gradient (a_ = k_ component) for latitudinal sections at different

distances above the cylinder's equator (units are f_ = ma_ in kg/s 2 = s2 for 1-kg test mass)
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Figure 24 Contour plot of capsule gravity gradient component _ (S -2) for a cylinder with
H/D = 1.5-m/1-m

Figure 24 shows the contour plot of the k_ = a_ component for a cylinder with H/D =
1.5-m/l-m. Note that the strength of the gravity gradient in the area of interest (near the

cylinder's centerline) is strongly decreased thanks to the lengthening of the cylinder in
the vertical direction.
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Asthecylinderis stretchedalongthevertical,theeffectof thecylinderedges(which
producestrongergravitygradients)is smallerthecloserthedetectoris to thecylinder's
centerline,wherethedetectorfree falls. In thefollowing plotswe will showall the
gravitygradienttermsk_,k2andk 3 (modulated at to) inside a cylinder with dimensions
close to those that we are considering at the present stage of development of the design.
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Figure 25 Cylinder without caps and H = 2.3 m; D = 1.2 m; overall mass = 500 kg.
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Variationof k.l.ka_nd k a along free-fall trajectories

Based on the evaluation of the dynamics of the instrument package relative to the

capsule (see also later on), we can map trajectories of the instrument package inside the

capsule and evaluate the maximum values of the gravity gradients that the detector will

experience during the fall.

It is important to evaluate the strength of the gravity gradient field inside the cryostat

along a worst-case trajectory of the instrument package (sensor) that moves with respect

to the cryostat/capsule during free fall. Based on worst-case wind shear conditions the
trajectory (in z-r coordinates) of the sensor with respect to the cryostat can be expressed
as follows:

Z = Zo - _ tb exp(ct2)

dg2t 6
+ (z-zo)siny

r = ro 8atfio

(26)

with a = 0.149636, b = 0.001692, c = 3.084, and d = 6x10 7 (see section on Optimization).

In equation (26), 130is the low-speed ballistic coefficient, z0 and r0 are the coordinates of

the point of release in the cryostat coordinate frame and ,/ is the angle of the capsule's

longitudinal axis with respect to the local vertical which (at this stage of the project)

represents a reasonable upper limit for the verticality error of the capsule during the fall.

This trajectory will beused in the next subsections.
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Cylindrical cryostat with flat caps

H

'¢

s

c

The Matlab routine has been modified to include

cryostat caps of different shapes. The routine
creates a two-dimensional mesh of point masses

uniformly distributed on the average surface of

the cylinder and its caps. In the case of flat caps
the mass distribution results in a closed

cylindrical surface of height H and diameter D.

The gravity gradient field has been mapped on
the z-x plane where x coincides with the

cylinder's radial and z with the longitudinal axis,

as far as s = 10 cm from the top and bottom and c
= 20 cm from the side walls.

The point of release P lies on the symmetry axis of the cylinder and at d = 40 cm from the

top. The sensor trajectory obeys eqns. (26) with 130= 10000 kg/m -_and the capsule

verticality error Y = 5° has been conservatively assumed to produce a lateral displacement

of the sensor in the same direction of the wind shear. The other parameters in eqns. (26)

also represent a worst-case scenario for lateral displacements. The key quantities k,, k_,
and k 3 are plotted as contour plots on the x-z plane in Figs. 26.
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Figure 26 Contour plots of k,, k2, k3 for a cryostat with flat caps and H = 2.3 m, D = 1.2
m and total mass = 500 kg.
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Thequantitiesk:, k2,k3are thencomputedalongthetrajectoryof the instrument

package and the power spectral densities are computed over the free-fall time of 26 s.

Results are shown in Fig. 27 where the peaks with frequency ]/tf = 1/26 Hz due to the
free-fall duration, are clearly visible in the spectra.
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Figure 27 k, ,k, ak_along the trajectory and their spectra.
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Figure26showsthatthequantityk 3 is relatively larger than k, and k 2. Consequently,

eqn. (25) poses a limit for the angle [3 that defines the capsule attitude with respect to the

spin axis of the sensor. After neglecting the much smaller k 2 (and k, which depends on

cos(213)) we find that the maximum allowable [3 is:

 max----lsin
2 _k3)

(27)

With a Xm_,of 10 .9 S-2 and the results shown in Fig. (27), we obtain a limit of 4.8 deg for

[3, which is a relatively large value.

Cylindrical cryostat with hemispherical caps

tl

A cylindrical cryostat with hemispherical caps has also
been analyzed. The gravity gradient distribution has been

mapped on the x-z plane, where x is the cylinder's radial

and z the longitudinal axis, between the base of the upper

and lower hemispheres and as close as c = 20 cm from
the side wall.

The release point P (and starting point for the simulation)
lies on the symmetry axis of the cylinder and at the base

of the upper hemisphere. The sensor trajectory is the

same as in the previous case.

0.4 [

kl (1Is 2)

i

rl.35e-010

" " '::5-

-0.2

-0.4 -

r

-0.6 ' :. •

,_.::_.,L_ :.," "': _ .','"

-0.4 -0.3

+1.35e-010

_,49e-011

I

_--4.49e-011

__1.35e-010

:_2.24e-010

Z4.94e-010

-o'._ -o.I
x(m)

0:1 0.2 0.3 0.4

47



1<2(1/s21

0

0.6

0.4

0.2

/

....................... -:-...=...c:_. :-:_:.-.=..: -._-_-_=_-- _.... .__ __

_ ....... _.___=._
-0,6 .... 0.2 0.3 0,4

-o4 -0.3 -0 2 -0.1 0 0.1
x(m)

Figure 28 Contour plots of k_, k,, k3 for cryostat with hemispherical caps and H = 2.5 m,

D = 1.2 m and total mass = 500 kg.
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Figure 29 k,, k 2, k 3 along the trajectory and their spectra.

The analysis carried out here and additional results not shown in this report lead to
the definition of a stand-off distance of about 40 cm between the sensor CM and the

heavy part of the cryostat walls to provide o_-modulated components of the gravity

gradient that are sufficiently low for the sizes and masses relevant to this project.
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Earth's gravity gradient

We compute here the Earth's gravity gradient tensor and we analyze the effects of
Earth's gravity gradient components on a rotating detector with a generic orientation of

its spin axis with respect to the gravity gradient field. Let us consider the gravitational
potential per unit mass at a point (x, y, z) with respect to the detector's center of mass:

V--- It/

4(x Rx)2 +(y-Rr) 2- +(Z-Rz)-
(28)

where Rx, Ry, Rz are the components of the radius vector R from the Earth's center to the

detector's CM (in which Z is the local vertical) and g is the Earth's gravitational

constant. After projecting about the detector's body axes in which x is the spin axis and

calling 0 = tot the rotation about the spin axis and dOthe elevation angle of the spin axis
with respect to the horizontal plane:

R_ = R(t)sin(_)

Ry = R( t) cos(¢) sin(_ot)

R_ = R(t)cos(q_)cos(wt)

(29)

The gravitational acceleration in body axes is obtained by substituting eqns (29) into
eqn. (28) and computing the gradient:

gx,gy ,gz }T = -VV (30)

The components of the gravity gradient matrix in body axes are finally computed by
taking a further derivative with respect to the spatial coordinates, to yield

g_ -- -_T[-2 + 3cos-'(#)] (31.1)

g_.--- 3_-Tsin(tot)cos(¢)sin(¢ ) (31.2)

gx: -- 3_--_3cos(t°t)cos(q_)sin(¢) (31.3)

gy:. -- R_ [1- 3cos2(¢) + 3cos2(tot)cos2(O)] (31.4)

g:= = 3 _ cos(tot) sin(wt) cos-"(0) (31.5)
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P 1 + 3cos2(tot)cos2($)] (31.6)

Here again, the components modulated at _o are gxy and gxz (in which x is the spin

axis). In other words, if the spin axis lies on the horizontal plane, the detector only sees

components modulated at 2o_ but if it is not, components modulated at the frequency

o_ appear. The strengths of these components are proportional to the tilt angle with

respect to the local horizon. Note also that the effect of the Earth's gravity gradient on a

rotating body can be readily applied to the space-based tests of the Equivalence Principle

in which the only difference from the balloon-based experiment is the slightly larger
value of the radial distance from the space-based sensor to the Earth's center.

An alternative way of portraying the origin of the o-modulated components of the

Earth's gravity gradient field is by considering the following. If the z-axis of the body

reference frame is directed along the local vertical (that is the spin axis x of the sensor is

on the horizontal plane) then the gravity gradient tensor is

_:_.,.) - R3 -1 (32)
0

The tensor does not change under a rotation about the z-body axis due to its structure
which reflects a symmetry about the radial line. Consequently, we can choose the

azimuth orientation of the spin axis at will (let us call it the y-body axis). A rotation dO

about an axis perpendicular to the spin axis produces terms g'xz = g'zx in the transformed

tensor:

go oFf = R4,FER_ -- GME -1 0

[g_.. 0 g_

(33)

where

g_. -- -1+ 3sin 2 ¢p

g_ = -1 + 3cos 2 q_

g_. -- gz_ -- -3 sin _cos

(34)

The g'xz and g'z_ terms are subsequently modulated at the frequency _o by the rotation

0 = e0t about the spin axis as shown previously.

Since there are terms modulated at the signal frequency _0, we have to make sure that

they are kept lower than the accuracy with which we want to measure the signal. From

the detector point of view, there will be requirements imposed on the centering of the
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sensingmassesandtheir orientationwith respectto theEarth'sgravity field asshown
lateron.

Disturbances induced by concentrated masses on board the capsule

Let us consider the reference system (x, y, z) fixed to the sensor with origin at the

center of mass and with x oriented along the spin axis and let us indicate the position of a
point mass n_ in proximity of the sensor in spherical coordinates (6,,/,p) (see Fig. 30).

zI y

X

Figure 30 Geometry of the sensing mass and reference frame

The position of n_ is then expressed as:

Xp = p cos 6 cos y

Yv = P sin 6 cos r

zp = p sin y

(35)

The gravity gradient matrix at the detector due to the gravity field induced by a mass

point mp is:

3x - p-" 3xy 3xz

G. mp [ 3yx 3X2 _ p2 3yz

FmP - "_ [ 3zx 3yz 3X 2 _ p2

(36)

Considering a sensor that rotates with respect to a fixed point mass in its proximity

we obtain the two m-modulated components already shown in the previous paragraphs:

1"[2= F._l -- F13sin(w" t) + 1"12cos(w" t) (37.1)

¢ r

1"13 = 1"3, = 1",3 sin(w-t) - 1"12cos(w't) (37.2)
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Themoduliofthetwoo-modulatedgravitygradientcomponentsF' _zandF'13arethe
sameandcanbeexpressedasfollows:

G.mp ixl -z (38)
X -- p'-----'7"- +y2

which shows that the masses located on the plane y-z (i.e., x = 0) do not generate

disturbances with the same frequency as the measured signal. Substituting eqn. (35) into

(38) and extracting p yields the minimum distance for a point mass to produce a

disturbing gradient equal to or less than the critical gradient agg.... :

Pmin =( G" mp _:os_cosyl4sin2 _cos2 y + sin2 yf/3
k agg_max

(39)

Setting a limit of 10 -9 S -2 for a .... we plot the locus f(p,_,,6) = 0 of the points in space

with agg = agg .... in Figure 31 for a disturbing point mass of 1 kg. Next, meridian sections
(rotated about the z-axis by the meridian angle 8) of the same locus are plotted for

different values of the angle 6 in Fig. 32 where r is the radial direction.

z

0.4

0.2

z(m) 0

-0.2

y(m) 0 _ 4
0.2

0.4

Figure 31 Locus of t0-modulated gravity gradient component with strength = 10 -9 s 2
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}\_<.,!i 43.2 j./

Figure 32 Meridian sections of locus in Fig. 31 for different angles 6 [6 = 0 (i.e., y-z

plane) - solid black line; 6 = 15° - blue dots; 6 = 30 ° - red dash; 6 = 45 ° - gray dash dot]

The worst case meridian section at 6 = 45 ° is plotted for different values of the

perturbing mass in Fig. 33.
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Figure 33 Meridian sections for 6 = 45 ° and different values of perturbing mass n_

(nap = l kg - solid black line; rnv = l0 kg-blue dots; nap= 100 kg - red dash)

The previous analysis defines exclusion zones for concentrated masses on board the

capsule. In general, masses can be placed rather freely on the y-z plane (perpendicular to

the scnsor spin axis). Masscs lying on this plane generate only 2(o-modulated components

whose strength only needs to be reasonably smaller than the upper bound of the dynamic

range of the sensor. The Earth itself produces such 2to-modulated components with a

strength equal to 3x l0 -¢'s2 that is well stronger than the sensor sensitivity (for realistic
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valuesof the sensing mass CMs errors), but is about 3-orders of magnitude lower than the

upper bound of the sensor dynamic range. For the 2o_-modulated term, the equivalent

Earth is a mass of 22,500 kg at 1-m or a 22.5 kg at 10 cm from the sensor.

Requirements related to the w-modulated components are more stringent and,

consequently, we will concentrate on these components which have been dealt with in

this analysis. In summary, concentrated masses should be placed as close as possible to

the y-z plane (perpendicular to the sensor spin axis). For masses away from the y-z

plane, Fig. 33 defines the exclusion zones from the sensor for different mass values under
the worst possible condition of masses placed on the 45 ° meridian plane.

Effect of Gravity Gradients on Differential Acceleration Measurement

The differential accelerometer consists (from the mechanical point of view) of two

sensing masses with ideally coincident centers of mass (CM). The equivalence violation

signal is measured as a differential displacement along the y-body axis of the sensor
which is orthogonal to the spin axis along the x-body axis. In reality the two centers of

mass (or more appropriately centers of gravity) do not coincide and CM2 (i.e., the CM of

mass 2) is displaced by a position error vector 8 with respect to CMj as follows

6-- 6,. (40)

We can place the body reference frame at CMI and compute the differential
acceleration due to gravity gradients by simply multiplying the gravity gradient matrix in

body axis, that is

6az ,

(41)

where 1'E, F c, F M are the gravity gradient matrices of the Earth, the distributed capsule

mass and concentrated masses on board the capsule, respectively. Since the differential

accelerometer measures only the component along the y-body axis, we obtain finally:

E c M + r c += + +r;x +(r;,.+r,.,.+r;,;. + y: (42)

in which I'_:(, F_,.c,and F_._ are the components modulated at the signal frequency e0 while

the other terms in eqn. (42) are modulated at 2to. In conclusion, the disturbing

differential acceleration along y produced by gravity gradients can be expressed as
follows:
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(ff_ay < 3-_s3cos(C))sin(d?)sin(wt)6 x + [(k 2 + k3)sin(2fl) + k_ cos(2fl)]sin(wt)6_

+ am(o_)+ fy(2ahO.v)+ fz(2_,6 z)

(43)

where k_, k_,, and k 3 are the gravity gradient terms (see previous subsections) generated by

the capsule in the capsule-body reference frame, _ is the elevation of the spin axis with

respect to the local horizon, 15 is the elevation of the spin axis with respect to the

equatorial plane of the capsule, aM(to) is the to-modulated disturbing acceleration (in

functional form) produced by concentrated mass on board the capsule (see previous

subsection) and fy(2to, I_y) and fz(2to, 6z) represent all the other 2to-modulated components

which have been separated in eqn. (43), according to the centering error components.

Note that the 2to-components depend on the centering errors 6y and 6z while the to-

components depend only on the centering error fix. The less-than sign in eqn. (43) is due

to the fact that, on the right hand side of the equation, we have adopted the strongest
value of the to-modulated gravity gradient component of the capsule, that is, for ct = 0

(see Fig. 15). Moreover, from the analysis of the capsule gravity gradients, we have

concluded that if we keep the sensor (at the CM) about 40 cm away from the heavy part
of the chamber/cryostat walls, the to-modulated gravity gradients are well below the

critical value of about 10 .9 S2. Based on similar reasoning, we assume that the

concentrated masses on board the capsule are placed outside of the exclusion zones

(defined in the previous subsection) in order to keep them below the critical value. In

other words, an appropriate design and a careful mechanical construction of the sensing

masses (rx of order microns) will make the gravity gradient contribution of the capsule

and the concentrated masses on board the capsule negligible.

To attenuate the effect of the gravity gradient of the Earth we have to make sure that

the product sin(O)cos(O)rxis sufficiently small. In other words we can trade the position

error between the CMs of the sensing masses along the spin axis fix for the tolerable angle

dOof the spin axis with respect to the local horizontal. For small values of dO,we readily

compute that for the first term on the right hand side of eqn. (34) to be smaller than, let

us say, 1015 g, the product qrx must be smaller than 0.1 deg-_tm. This requirement must

be considered in the design of the detector, the release mechanism, and the capsule
leveling system of the capsule. The complexity of some subsystems can be traded for the

simplicity of other subsystems among those three devices.
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THEORETICAL IMPACTS

Contribution of Parity Non-conserving Weak Interactions

Introduction

A theoretical question that we sought to address can be simply stated: What is the
contribution to the mass-energy of each material due to the parity non conserving part of

the weak interaction? The reason that we sought an answer to this question was to find

out if our experiment would be sensitive enough to determine whether or not this

contribution obeys the weak principle of equivalence.

Unfortunately, the present level of development of physics does not allow us to
address our question reliably. Knowledge of the physics of nuclear matter is too

primitive. We have therefore had to make a number of "reasonable," but nonetheless
somewhat arbitrary, assumptions to carry out the calculations. The discussion below

mentions each of these assumptions. The results of the calculations indicate that our

experiment will not be sensitive to the contribution to mass-energy of the parity non

conserving part of the weak interaction.

Evaluation of contribution

The materials to be compared in the experiment should have binding energies stored

in forms which are as different as possible. For example, if gravity couples differently to

protons and neutrons, we should compare elements with different proton to neutron
ratios. A new long range force could also be detected by comparing such elements. A

force coupling to baryon number would cause an acceleration proportional to the total

number of protons and neutrons divided by the mass, or for a single nucleus, to

(mp -m,,)
(Z+N)/(mp Z + mo N)~I/mN(I x). Here x is the ratio Z/A and Z, N and A are

mN

the number of protons, neutrons, and combined nucleons. The mass mN is used for the

common mass of protons and neutrons. In order to observe this effect, it is best to

compare heavy elements with x~l/3 to light elements with x~l/2.

As we will see below, the energy of a nucleus can depend very sensitively on the

wave functions of the protons and neutrons. We will discuss a force coupling to the

product of proton and neutron densities. Such a force is more significant for nuclei in
which proton and neutron wave functions have greater overlaps. This suggests choosing

a nucleus with a magic number to compare to a less stable nucleus. The filled shell
structure of a nucleus with a magic number may imply greater overlap of the wave

functions of the protons and neutrons.
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Supposegravitycouplesdifferentlyto theenergyproducedbytheparityviolating
partof theweakforce. Wemustcalculatewhatfractionof anucleus'senergyisstoredin
this form,althoughwewill seethatit isnotverywell defined.Firstof all, right-handed
neutrinosdonotappeartoexist,soit isnotjust theweakforcewhichviolatesparity.The
modelusedin Refx_ito calculatethetotalweakforceenergyof anucleusisa current-
currentinteraction.To discussthis,let usconsidertheLagrangianfor theinteractionof
theweakforcewithquarksandleptons.Schematically,it is A (J_' + J" ), where J and

J5 are the weak vector and axial currents, and A is the field of the weak force. (This

expression must be summed over the three types of W particles; this formula ignores the
fact that the observed W and Z particles are actually linear combinations of these three

fields with a fourth field.) By including both terms, we ensure that the coupling to right-

handed particles cancels. The first term here is the parity violating term. However, if we

use a contact interaction, taking into account the large mass of the W particles, we find an

interaction of the form Letr = (J_ +d_)(J" +js_,). Multiplying this out, we get four

terms--only the terms coupling the axial current to the vector current seem to violate

parity in this description of the weak force. Another difficulty is that the separate vector

and axial currents are not actually well defined if right-handed neutrinos do not exist.

Since the parity conserving parts of Leff contribute one part in 108 to the mass of a

nucleus, current limits imply that gravity's coupling to these terms must differ by less
than 10 .4 from its coupling to other matter. The parity violating terms of Leefcontribute
much less to the mass of a nucleus. If li> is the state of the nucleus with weak forces

neglect, then the first order perturbation of its energy due to these terms is <ilJUJ_ li>,

which vanishes by symmetry. (li> is a parity eigenstate, so the operator changes its parity,

and gives a state orthogonal to <il.) This ensures that the contribution of the parity

violating terms is second order in perturbation theory, and therefore small enough to be
unconstrained by previous experiments. However, Leffis only useful for calculations. It

would be strange for gravity to couple differently to the parity violating part of the weak

force unless it coupled differently to J_A" in the original Lagrangian. In this case

j_js, would also couple differently to gravity, and this would be a much larger effect.

While we are deciding which terms of the effective Lagrangian will be considered

to be parity violating, we should notice that there are other parity violating interactions
involving pion exchange x_a_xiv. Ref. xxiv probably overestimated the contribution of

j,
Jr, to the weak energy of a nucleus, because of the assumption that the nucleons are

distributed independently of one another in a nucleus. In fact, protons and neutrons are

generally not closer to one another than their radius of 10 _5 m, or (160 MeV) _ as
compared to the range 1 GeV -I of the weak force. Thus, the weak interaction of nucleons

occurs only very rarely. The pion exchange force has a range larger than the size of a

nucleon, so the assumption that nucleons are independently distributed is more accurate
when considering this force.

The interaction between nucleons and pions is described by the Lagrangian
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p

Lm, = --ig_u N_ 5?" _q - 2f_ N(? x _)3 N

(Ref xxv) where we have used isospin notation, so that N is an isospinor of proton and

neutron fields: N={P], ? is a vector of three Pauli matrices, and if" isthe vector ofpion
k /

JT + +,71_- 9Z+ --J'_- 0
--,i ,Jr ). The first term in the

fields, which are usually written as ( _ ,_-

Lagrangian represents pion exchange due to the strong force (g_ruu = 13.45), the second to

the weak force (f_--4.54x10-7). This term violates parity. We will calculate

contributions to the energy of a nucleus arising from this term.

Any interaction in which a light particle like the pion is exchanged can be

approximated by interaction potentials. For example, we begin with a simplified model

of spin zero protons and neutrons which can exchange a neutral spin 0 pion (of mass m,).
Let the interaction Hamiltonian be g(n*n+ptp)_t. Then the amplitude for pion emission is

-ig. Let us calculate the potential acting between protons and neutrons. The Feynman

diagram is:

.U- j

I

I

P P p
4

i g2 We have
The amplitude associated with this is A = 7(-tg)-q2 2 =-_ 2 •- m_ q- + m_

omitted the time-like component of q, since this is the energy transferred between the

nucleons, and is small compared to the momentum in the non-relativistic limit.

Compare this to the calculation of scattering under the influence of a potential V.

ei_ P_",-'.+p2 ;p ) ei{ p3 ";n+P4 "Fp )

and I_Pf >= In time
Let the initial and final states be I_pi >= (2st)3 (2rr)3

independent perturbation theory, we solve for the
l

c r =< f[T(-_,t) li >= f<.fl Vii > e'(eJ-e'Wdt' '_ ,l(t_2Jr6(E r - E,).

coefficient

It is not hard to check that 1/,_ -- _ 6 (_, + #2 -/33 -/34 )f d3 "_ V(._')e i_'_
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The Feynmanamplitudeis closelyrelatedto this coefficient; however,it is
calculated with the wave functions normalized so that

"_ 6

< P3P4 [P_P2 >= 4E_E2 (2x)36(P_- 153)6(/32- P4 )_ 4mN'(2x) 6(/3,- P3)6(P2 -/54 )"

f3

Thus we must multiply our value for cf by 4m N- (2.zr) . The relationship between c t and
A is thus

i,4(2_)46(E3 + E 4 - E, - E,_)6 (_, + P2 - Ps - ]°4) = 4mN2 (2.rt)6 cf •

Therefore

A -4mN2tjV(x)eiq_d3.r", and the inverse Fourier transform of this gives V. We find

_ g 2e-'_ I_1

that V(._) -- (4mN 2 )4x ] ._ ] ' where the transform is evaluated using spherical coordinates.

This is the Yukawa potential, but it is not actually the true interaction potential of the

protons and neutrons, since protons and neutrons really have spin 1/2, and have axial
couplings to the pions.

Expanding the Hamiltonian given above, we find the parity conserving and parity
violating pion-nucleon interactions

Hec = f d3 (prsp - rrrs.) ° + .f2(pysn.n: ÷ + rrysp_ - )

and

He,. = _-_f d x pnx - rrprt

The rt's are pseudoscalar particles and ,_YsP and similar terms are scalars, and so it is the

first of these interactions which is parity conserving. This is actually a convention, since
if the second interaction had been discovered first, the pions would have been called

scalar particles. A consequence is that an interaction between nucleons by exchange of
pions is equivalent to a parity conserving potential as long as both pion-nucleon vertices

are governed by the same interaction. If the pion is emitted according to the parity
conserving interaction and absorbed according to the parity violating interaction, then the

equivalent potential distinguishes between left and right. We call the three potentials

VpcPc, Vpvpv, Vpvpc, where the subscripts indicate the nature of the pion exchanges (parity

violating or parity conserving).
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t

n P p
4

Since the PVPV interaction is mediated only by charged pions, the only possible

interaction is the above. The proton turns into a neutron when it emits the :r ÷ in order to

conserve charge. The calculation of the potential associated with this interaction is very

similar to the calculation above for the simplified model. There are two differences.

First, the extra factors proportional to the mass which arise from normalization
conventions do not occur for spinors. Second, since the proton and neutron have two

spin states, we must determine how the interactions affect their spins. Since the pions are

spinless, a nucleon's spin does not flip when it emits a pion. Thus if the proton initially
has spin up and the neutron is spin down, then the scattered proton has spin down and the

scattered neutron has spin up. The effective potential for this interaction is

f2 e-m.l_-_,l
-g) =

2 l
and neutronsintoprotons.

X, where X is an operator which turns protons into neutrons

Since particles can change types, we will use second quantization. The operator

n_ (fi)Pt (_) + n_(_)p_ (_) turns a proton at point r_ into a neutron at the same point

with the same spin. So the operator X is equal to

[p_- (_)n, (_) + p_- (_)n, (_) ][n T(_2)P, (_) + n_ (J:2)P, (Y2) ]"

The interaction Hamiltonian is therefore

Hpvev =-ffd3;,d3 .,;:_i_ _U2 i [P_ (r-l)n_(il)+ P_ (_l)nJ,(q ) lln4( (JZ2)Pt(P2)+n_ (_2)P$ (_2) ]"

This interaction does not seem to mediate a force between two separated

nucleons, since the nucleons can't retain their identity. In particular, it cannot mediate a

force between two separate nuclei, even though it does contribute to the binding energy
of a single nucleus. Suppose the nucleus can be modeled as consisting of two Fermi seas,

one of protons and one of neutrons. (Of course Hpcpc, which is much larger than any

parity violating interactions, produces correlations in nuclei.) There are protons of both

spins and of every momentum less than kp, and there are neutrons up to k.. We will

assume the nucleus is very large so that we can approximate the waves by plane waves,

and we will calculate the energy density due to Ht, vev. Then since the proton and
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neutronwhich interactarein the samenucleus,the interactiondoesnot changethe
nucleustype.

Theenergyshift is<il Hpvpv li>. Consider the action of HmT_ r on the Fermi sea.

It acts on two particles--a proton of momentum /_1 and a neutron of momentum /_,

changing their momentum and interchanging their particle types. Since the resulting state

is multiplied by <il, it must have the same occupied states as li> in order to give a nonzero
contribution to the energy. Thus the final proton must have the same momentum as the
initial proton, as in the following diagram:

proton proton

k
I

r_ut¢on

k k
2 2

Also, the particles must have the same spin, since the interaction does not flip spin.

In order to see at least one failure of our approximations, we consider two general wave
functions for a proton and neutron and calculate their interaction in these states. We

ignore the spin wave function, and set

Iv >= Ip,,> I,,p>).

The wave function here is antisymmetric in space and isospin, according to the Pauli

exclusion principle for multiple types of fermions. Thus neither _ nor _:2 is the

coordinate of the proton. But f_ must be the wave function of the proton. Assuming both
spins are up,

f_2 - - 3- 3- + - - + -

2

= -_Vtr2 - 4)f_(4).f2(6)lnp > -V(4 -F2)f2(4)i_C2)lpn >].

In evaluating the integrals, we must choose _1 and &, to coincide with _ and 6 in one

order, so that _ represents the location of the initial neutron. Now, noticing that

<pnlpn>=<nplnp>= 1 while <pnlnp>=<nplpn>--0, we obtain

' f-J_Tffd 1- "_...... . , . , ..... . - . ....<t I, IHpvPr lip >= "id-'2//0i-#2)[Jl(rl ) J2 (j:_) J2(rl)Jl(r2)+f2(q) flO).) Jl(ri)./205.)]

= _ffd34d36 v(_ - 6 ).6(_)'._ (4)f, (_)._ (_)*.
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wherethetwotermscanbecombinedbyexchanging_ and;2 in the second term.

This has the form of an exchange force--notice that if f_ and f2 are never nonzero at the

same point, then the integrand vanishes. This is why we claimed above that the shell
structure might affect the parity violating energy; a simple form with plane wave states

ignores all the structure of the nucleus.

In order to find the total energy, we must sum over all occupied proton and

neutron states f_and f2 respectively. There is also a self-interaction due tOHl, vec in which

a nucleon changes type and then changes back. This gives an infinite contribution to the

energy, and is also more significant because a particle is certain to be at the same location
as itself, so the comment about overlap at the end of the last paragraph doesn't apply.

We will discuss self-energy contributions at the end.

e-m,l?t-i'21

J and plane waves which are normalized so that their
Substituting V(_ -F 2) = 4zr [ _11 _ 72 [

integral over the volume V of the nucleus is 1, we obtain an energy proportional to the
Fourier transform of the Yukawa potential. It is equal to

< HpvPv >=

f2 1

2V m 2+1/_,-/_2 ]2
, and the sum over all pairs of nucleons is

q o1' m_,2+lk_-k_ 12• " "2 "n

where the factor of 2 arises because the proton and neutron can be both spin up or both

spin down. Converting the sum to an integral in the usual way, we obtain

tSEm, = (
,_ m,-+ I/_1-_ 12.

1 v "2 . 2

First integrate over/_2 ' taking the z-axis along /_.

1 k,, , ,_ sin0d0

m 2+]___12_2.rrj k2-dk2je e,, , ,. o rG-+k_-+k 2--2k_k 2cosO

k. ln(m. 2 + k l- + k.- - 2klk. cosO)
= 2.Trf k_'-dk, " -

o " - 2klk2

kn "_k. m.- + (k, + k 2)2

=nf_dk 2In( _ )2 )o m.- + (k I - k 2
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We now integrateover thedirection of /_1, giving a factor of 4_t, and then give the

expression for the integral:

_E pi,

V

(44)

The integral is evaluated by repeated integrations by parts.

We would now like to evaluate this expression as a function of x = Z/A. The

volume of a nucleus is proportional to A; that is, each nucleon occupies a fixed volume.
4 3

The volume is given by 7m'0 A where r, = 1.2 fm _x'. As usual, the Fermi momenta are

given by kp----(3_2np) 1'3 where np is the proton number density, so

_ 13 9:rkp -;;o3_x = 3203_MeV and similarly k, - 320_-x MeV. Furthermore, the mass

of a nucleus is roughly AmN, so

4 3
6Eev V 6Eev ";m"o 6Eev

- - (1.O×IO-gMeV -4) 6Em: (Notice that our
M Am N V mu V V

estimates, for x = 1/2, give a Fermi momentum of 250 MeV, which is somewhat small

compared to the nucleon mass, so our nonrelativistic approximations (in particular,
neglecting the time-like component of q in the derivation of the effective interaction)
seem reasonable.)

The following figure shows 6Eev as a function of x; it is on the order of 1016 and is
M

almost exactly equal to 6Era-------:-"_-9x(1 - x) x 10-16 , which is much easier to interpret than
M

the formula given above; for a contact force, the number of interactions occurring in the
nucleus is proportional to the product of the densities, which is proportional to x(l-x).

(The suggested derivation of this formula--assume the mass of the pion is very large and

replace the interaction by a contact interaction--gives an incorrect answer,

30x(1- x)×10 -16 . The mass of the pion is not large enough to regard Vvv as a contact

interaction.)

64



2

1 / \\/ \
O.Z 0.4 0.6 0._ 1

X

The fraction we have just calculated is very small, and (since we can only

compare different nuclei) its variation from nucleus to nucleus is even less--2xl0 Iv, if x
varies from 1/2 to 1/3. There are similar smooth empirical formulae for the total mass of

a nucleus, but the mass differences are somewhat larger from nucleus to nucleus because

the mass depends in a more jagged way on the atomic number. Thus, the plane wave

description of the protons and neutrons cannot suggest which nuclei have unusually large

or unusually small contributions from the weak force. There are many other

contributions to the parity violating energy as well--for example, the interaction Vpcpv

produces an energy shift at second order in perturbation theory. This can occur only at
second order because <il Vpcpvli> vanishes--after all, li> is a parity eigenstate since the

strong forces which determine the structure of the unperturbed nucleus are parity

conserving. However, by introducing an intermediate state of opposite parity and very

similar energy, one can hope to obtain the largest possible weak parity violating

contribution to the energy. For 19F, Ref xxviestimates 6Epv =7x10 Iv, which is very
M

similar to what we obtained above. Ref. xxvi did not calculate the matrix elements from

the theoretical formula for Vpcpv but from an experiment mentioned in Ref xxv. The
latter reference also calculated the matrix element from a theory based on exchange of

pions and other particles, giving a value which was off by only 20%.)

Ref xxvi's calculation did not take the direct exchange of single pions in which

both the emitted and absorbed pion have parity violating interactions, leading to an

impression that only nuclei with narrowly separated partners of opposite parity have large

values of 6Epv . However it leads to a very clear case in which one expects a jump in the
M

parity violating energy--choose a nucleus li> which is close in energy to another nucleus

li'> with the opposite parity. Fluorine is not the only choice. If one were to calculate the

matrix element of Vpcpv between these states theoretically (the calculation would be

similar to the above), one would find that < i' [Vecm, li >oc volume ocM . Thus,
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=, f<i'I [i M
, where the denominator here is just the energy

M M Mi -- Mr Mi _ Mi '

denominator (with energy replaced by mass). (M is either of the two masses.) So we

expect an especially large parity violating energy if the mass difference of the nucleus
and its excited state is small compared to the mass of the nucleus.

Finally, Ref. x_,_ calculates the weak-force self-energy of a proton or neutron and

finds that its fractional contribution to the mass of a nucleus is 10 times larger than the
energy from the interactions of different protons and neutrons in the nucleus calculated in

Ref. xxiv. Most likely, the parity violating self-energy of the protons and neutrons is

more significant than anything we have already calculated. This returns to one of the

most obvious models for equivalence principle violations--assume that gravity couples
differently to protons and neutrons. This gives gravitational mass differences which are

linear in x (just as we found in the model of a long range force coupled to the total
number of baryons in a nucleus). So a simple approach is to choose nuclei with the

largest and smallest possible values of x. (Hydrogen and Uranium are suggested in Ref.
xxviii!)

There are three reasons why it is unlikely that gravity couples differently to the
"parity violating part of the weak force." First, this depends on whether one uses the

fundamental Lagrangian or the current-current Lagrangian as discussed above. In

practice, the definition of the parity violating and parity conserving energies is very
technical--a summary of the definition we used is "it is the part of the weak force which

is second order in perturbation theory." Second, in the electroweak theory, photons are

linear combinations of a W particle and another gauge particle, so if gravity couples
differently to the W particles, it probably couples differently to the photon as well. Third,

all self-energies are infinite in any case. This is why the self-energy of the protons and

neutrons calculated in Ref. xxix is much larger than the energies of the nuclei calculated

in Ref. xxiv. The interactions of the quarks inside the protons and neutrons are larger
than the interaction energies of different protons and neutrons because the quarks are

closer together. If the quarks are point particles, then they contribute infinite self-

energies due to the weak force besides these other energies. Fourth, energy cannot be

separated into different forms of energies. For example, the energy we calculated above
includes the mass of the virtual pions, which is due to the strong force.

Addendum to Theoretical Impact Analysis

In two recent papers xxixxxx,Damour et al., provide a theoretical justification, based on the

string theory for expecting violations of the Equivalence Principle at an accuracy above
one part in 10-12which is slightly below the present state of the art in EP tests. Their

argument centers on the inflationary rate of expansion of the early universe and on the

decoupling of scalar fields from matter during the expansion of the universe. When the

recent estimates of the early expansion rates are factored into the theory, they conclude

that violations of the EP may well occur at accuracy much lower than previously thought.
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Theconclusionof theanalysisby Damouret al.givesstrengthto EP experimentswith
improvedaccuracyevenif theimprovementis notasdramaticasthosepromisedby the
space-basedtests(of severalordersof magnitude)of theEP. Anotherimplicationis that
our goal shouldnot be to pushthe accuracyashigh aspossible(andconsequently
increasethedifficulty and costof the experiment)but ratherachievea significant
improvementinaccuracywith respecttothepresentstateof theart.
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CAPSULE/CRYOSTAT DESIGN APPROACH

Introductory Remarks

During the early conceptual development of this experiment, we were focusing our

attention mostly on free-fall spans of a few meters to achieve free-fall time as long as

possible. This situation, however, precluded the use of a fully cryogenic capsule because

of mass considerations and pushed us towards the adoption of a small cryostat at the top
of the vacuum chamber to refrigerate the instrument before release. However, the small

cryostat creates additional problems which are highlighted by the previous analyses as
follows: (1) the small cryostat is a concentrated mass placed very close to the detector

and, cosequently, produces relatively strong gravity gradients; and (2) the instrument

package spends most of the free-fall time in the vicinity of the small cryostat and moves
away from the small cryostat only in the later portion of the fall.
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Figure 34 Vertical motion of package relative to capsule for 150= 7000 kg//m 3 (shown
for distances < 1 m)

Figure 34 shows clearly that the relative distance between the instrument package and the
capsule (for a typical 150= 7000 kg/m 2) is less than 10 cm during the first 14 s, increases

to about 1 m at the 24 s mark and becomes greater than 3 m at the 30 s mark (not shown

in the figure). In other words, the small cryostat can not be small because it needs to be

moved farther away for reducing the self-generated gravity gradients and also for

allowing for lateral motions of the capsule with respect to the falling package. The free
fall time (once several seconds are spent in attenuating the initial transient motion of the

sensing masses after release) affects the experiment accuracy only through its square root
(i.e., a weak function). Consequently, it is sensible to sacrifice a few seconds of free-fall
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timeinorderto maketheexperimentalareasufficientlyshortto openuptheoptionof a
fully cryogenicvacuumchamberforthedetectortofall in.

Theseconsiderationsareformalizedin thenextsectionby developinganoptimization

process aimed at identifying the size and mass of the experimental chamber and the

capsule.

Optimization of Capsule Size and Mass

A design optimization would appear premature at this point of the flight definition study.

This optimization process, however, is aimed exclusively at evaluating in a consistent

way the size of the capsule and its overall mass. The goal of the optimization process is
to devise a mathematical formulation for evaluating capsule sizes and masses that satisfy:

(1) geometrical/dynamical constraints and (2) engineering constraints. The first category
includes the constraints determined by the strength of the gravity gradient inside the

vacuum chamber (generated by the capsule mass itself) and related to the motion of the

instrument package with respect to the capsule during free fall. The second category
includes size constraint due to transportability and handling of the capsule and also

minimum and maximum allowable mass. The minimum mass is determined by the

ability of building a vacuum chamber that does not buckle under the atmospheric

pressure while the maximum mass is limited by the carrying capacity of the balloon.

The independent variables to work with (as it will become clearer in the following) are

the (frontal) low-speed ballistic coefficient of the capsule and the free-fall time. The

output variables are the capsule diameter and related capsule length, free-fall span,

cryostat mass, and capsule mass.

In more detail, we first need an expression of the free-fall span of the package inside the

capsule as a function of the ballistic coefficient 130and the free-fall time Tf. The free-fall

distances were derived numerically because the relevant functions are not integrable.

Consequently, we have to fit the numerically-derived function over the two parameter

space (130, Tf). The fitting was done successfully over the range of interest of the

parameters by starting from the analytical formulation that approximates the solution for
a constant ballistic coefficient and then evaluating the fitting coefficients for the general

case with variable CD. The two-parameter fitting process yields:

Zf = aTf b exp(cTf 2)/flo (45)

where a = 0.149636, b = 3.084, and c = 0.001692 are the fitting parameters. The results

are accurate within a few percent for ballistic coefficients varying from 2000 kg/m 2 to

20000 kg/m 2 and free-fall times from 0 to 30 s.

The free fall vertical distance readily determines the minimum length of the
experimental chamber which must at least equal the free-fall span plus the vertical size

(outer diameter) of the instrument package, that is:

Lmm= _lzf + D (46)
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whereD is theouterdiameterof the instrument package and I] is a safety coefficient

(typically equal to 1.5) that takes into account the uncertainties in estimating the drag
deceleration due to the rarefied atmosphere.

The next step is to evaluate the minimum internal diameter of the chamber/cryostat

that can accommodate the lateral and attitude dynamic of the capsule and also provide

low values of the gravity gradients along the free-fall trajectory. In order to keep the
equations manageable we adopt for this analysis the constant stand-off distances which

were derived previously and boundary values for the capsule attitude dynamics, rather

than using an (on-line) numerical computations of the gravity-gradient field as a function

of the capsule position (as done in the previous section). The goal is to compute a
minimum value of the internal diameter and external diameter (where the two are related

through the cryostat thickness) that keep the free-falling package close to the capsule
center-line (far away from the cryostat walls) under the action of a maximum wind shear

and for reasonable assumptions about the capsule attitude (pitch or roll) dynamics during

the fall. The point above can be translated into the following equation for the external
capsule diameter:

Dm exl I
(47)

Ypi,ch= zfsin(0max) where zf is given by eqn. (45) and 0max can be interpreted as either a

limit value of the maximum pitch motion of an uncontrolled capsule or a requirement

imposed on the control system of the capsule attitude during the fall. The lateral

displacement due to wind shear Y_hear=f(_0, Tf) is given by eqn. (10) while Y,yo is the

thickness of the cryostat wall of 10-15 cm (i.e., typical values for large-size helium

cryostats). The stand-off distance ygg is the upper bound of the minimum distance
between the detector CM and the heavy walls of the cryostat that defines an area

(cylindrical and centered at the cryostat center-line) where the gravity gradients generated

by the cryostat are sufficiently low. An upper bound of 0.4 m can be adopted across a

variety of cylindrical cryostats for sizes and masses of interest to this project.

One obvious consideration is that the internal diameter must be large enough to contain

the instrument package. This constraint, however, is already accounted for by the fact
that 2ygg > Wp where We is the width of the instrument package that is presently estimated

at about 40 cm. The overall length of the capsule is related to the external diameter

through the fineness ratio that, as explained previously, needs to be about 1:4 in order to

keep low the value of the drag coefficient, especially in the compressible flow regime.

The next step is to estimate the minimum mass required for the cryostat. Most of the
cryostat mass is for the metal of the vacuum chamber that has to withstand the external

atmospheric pressure (at ground level). From engineering formulas for the buckling of
cylindrical vacuum chambers we obtain that the critical thickness of the vacuum chamber

walls (at buckling) is given by:

1

Scrit .__[.Pe(t/e)]_.5

n t 0.92E J
(48)
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where R and L are the radius and length of the vacuum chamber, sc,.i, is the (minimum)

thickness of the load-bearing shell, E is the Young's modulus of the material and Pe the

external pressure. The cryostat length is readily computed as:

L = rlzff + 2ygg (49)

The minimum cryostat mass is then computed as follows:

min = VScrit_pD(O/k + L)M o-yo (5O)

where p is the density of the material, D the cryostat average diameter, v is a load safety

factor and k is a shape factor that is equal 2 for flat cryostat caps and 1 for hemispherical

caps. After adopting v = 3 and using eqn. (48) to compute the thickness, we find that

eqn. (50) provides masses which are in line with actual values of large cryostats (as
verified with Janis Research). Since the cryostat is the heaviest component of the

capsule, we can estimate the overall (minimum) mass M,it of the capsule as a proportion

of the cryostat mass M = ¥Mc_yo.

The actual mass of the capsule M, however, is defined by the ballistic coefficient [30

once the external diameter of the capsule is determined as follows:

M = _CDoA (51)

where A is the frontal area of the capsule computed through eqn. (47).

Consequently, we must verify that M > Mm,. If the inequality is true we can simply

add ballast to the capsule in order to preserve the values of the geometrical variables and

meet the actual mass requirement. In this case, the vacuum chamber of the ballasted

capsule will satisfy the strength requirements captured by eqn. (48). If the inequality is
violated, the total mass determined by the ballistic coefficient is too small to build a

cryostat that is strong enough to withstand the atmospheric pressure. The violation of
this inequality will be dealt with in the optimization process as a (strong) penalty on the

cost function as explained later on.

Figure 35 shows an example of a contour plot of two of the key output variables, that

is, the capsule mass and the capsule external diameter vs. the low-speed ballistic
coefficient and the free-fall time for realistic values of parameters.
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Figure 35 Contour plot with grid lines showing capsule mass and external diameter vs.

low-speed ballistic coefficient and free-fall time.

The goal of the optimization process is to define the size and mass of the capsule that
minimize the value of a cost function. The cost function consists of the overall capsule

mass, the capsule diameter (which is related to the overall capsule length), and the free-

fall time. The cost function for this optimization problem can be expressed (and the
choice is not uniquely defined) as follows:

CF = aIM + a2Dex'
+ PM + PD with tf * tmin (52)

"V_-/-- lmin

where M and Dex, are the overall mass and external diameter of the capsule, zf is the free-
fall span inside the capsule (which defines the cryostat length), tmi" the minimum desired

free-fall time, tethe free-fall time, a_ and a2 are weighting coefficients and PM and Po are

penalty functions. PM is the penalty function for the total mass and PD for the external
diameter.

The structure of the cost function is readily understood after considering that the
experiment accuracy depends on the square root of the integration time. The minimum

free-fall time has to include the time required to damp initial transients (a few seconds)

and also a minimum number of cycles needed for a reliable extraction of the signal from
noise. The weight coefficients adjust the relevant weights of the two quantities at the
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numeratorbymakingthemcomparableand/ormakingonecomponentmoreimportant

than the other one. By adopting meters for the units of length and metric tons for the

units of mass, the two weighting coefficients have the same order of magnitude.

Going back to the penalty functions, obviously the overall mass of the capsule must be
greater than the minimum (or critical) mass Mc,t determined previously and smaller than
the maximum mass Mma x than a reasonable size balloon can carry to an altitude of 40 km.

Note that Mm,x is a fixed value while the critical mass depends upon the optimization

parameters.

In a similar manner, the external diameter (which also determines the overall length of

the capsule according to Lc = Dex,/6) must be large enough to accommodate the

instrument package plus the cryostat walls (i.e., larger than Dmin) and smaller than a

maximum value Dma x. In this case both values are fixed and moreover the first inequality

(larger than) is superseded by eqn. (47) if 2ygg > wp.

The penalty functions are bowl-shaped functions which are equal to zero for values

within the two boundaries of the inequality and whose value rapidly increases as the input

variable approaches the boundary values. Figure 36 shows the mass penalty function for
two values of Mcr, = 0.3 ton and 1.0 ton, respectively, and Mma x = 2.2 tons. The

maximum value of the penalty function is quite arbitrary. The value simply needs to be

substantially greater than the expected range of values of the first term that appears on the

right hand side of the cost function in eqn. (52).
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Figure 36 Example of mass penalty function with M_,, = 0.3 ton and 1.0 ton, and

Mm_x - 2.2 ton.

A similar penalty function with fixed-valued left and right boundaries was derived to

penalize the external diameter of the capsule. Without going into excessive details, the

penalty functions are obtained from a pair of exponential functions with a set of

parameters and power exponents that shapes the function appropriately.
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Optimization Results

The optimization routine has been exercised on a large number of cases in order to

inspect the influence of any given input parameter on the output/design parameters and

the cost function. In the following we will show only the most important results relevant

to: (a) a cryostat made of Aluminum and (b) a cryostat made of Steel. The numerical

parameters adopted for computing the results shown in Figure 37 and Figure 38 are as

follows: instrument package width wp = 40 cm; low-speed drag coefficient of the capsule
CD0 = 0.1; fineness ratio of the capsule _ = 0.25; wind shear = 0.005 m-s-I/m; wall

thickness of cryostat = 15 cm; stand-off distance for reducing gravity gradients ygg = 40
cm; uncertainty factor on drag deceleration r I = 1.5; strength safety factor for vacuum

chamber v = 3; mass ratio capsule-mass/cryostat-mass ,/= 2; density of material p = 2800

kg/m 3 (Aluminum) and 7800 kg/m 3 (Steel); Young's modulus E = 80 GPa (Aluminum)

and 200 GPa (Steel). Moreover, the maximum capsule mass for a mass penalty in the cost

function is equal to Mm_x= 2200 kg. The maximum external diameter of the capsule for a

penalty is Dm_x= 2.2 m (which implies a maximum capsule length of 8.8 m). The weight
coefficients have been as follows: a_ = 1 (mass) and a2 = 1.5 (external diameter) in which

masses are expressed in metric tons and diameters in meters. More weight has been
given to the diameter rather than to the total mass because, as it will be seen later on,

there is a fairly large mass margin (large balloons can carry a few tons) while a large

external diameter leads to long capsules that are difficult to handle and transport.

The value of the cost function is shown as black contour lines in Figure 37 and Figure

38 and the contour regions are colored with the deep blue color corresponding to the

minimum of the cost function. The grid lines of the free-fall span are also added to the

figures in green color. The figures provide a host of useful information as the grid lines
specify the values of key variables such as capsule mass, external diameter, and free-fall

span (of the instrument package inside the capsule) for any point identified by the

coordinates [80and tf. The equations shown previously enable us to compute readily other

key design parameters: the cryostat length L from eqn. (49) and its mass by dividing the
capsule mass by "/.

Figure 37 shows the results for a cryostat made of Aluminum and Figure 38 for a Steel

cryostat. The cost function identifies the area on which to focus the selection of the key
design parameters. In the (desirable) deep blue area (inside the smaller circular contour

lines) the cost function is rather shallow and, consequently, the region for selecting the

design parameters is reasonably large. In the dark color region, one of the mass or

geometrical constraints has been violated and consequently the penalty functions bound
the design area. Note that the maximum capsule mass limits the design area on the

right-hand side of the plots while the (critical) cryostat mass and the maximum external

diameter of the capsule limit the design area on the left side of the plots. In the Steel-

cryostat case the (critical) cryostat mass is the leading boundary condition on the left side

of the design area. In the lower side of the plot, the design area is limited by the

minimum free fall time that has been set equal to 15 s in order to allow for a reasonable
numbers of signal cycles.
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Figure 37 Cost function in the capsule parameter space (Aluminum cryostat) 

The figures show that an external diameter in the neighborhood of 1.4 m is a valid 
selection for the capsule based on the assumptions of this analysis. The 1.4-m diameter 
contour line cuts across the region of the minimum value of the cost function. 
Furthermore, the minimum-value region is larger for an Aluminum cryostat than for a 
Steel cryostat because in the latter case the boundary of the minimum (and critical) 
cryostat mass encroaches into the low-valued area of the cost function. Consequently, 
Aluminum is preferable to Steel, from this analysis point of view, as it allows wider 
margins to work with in the capsule design. However, Steel is also a valid choice and it 
might be preferable to Aluminum for the vacuum chamber because of the low outgassing. 
After focusing on Figure 37, an “optimal” design choice could be an external capsule 
diameter of 1.4 m (with an overall capsule length of 5.6 m). The overall capsule mass 
could start at a minimum value of about a 1000 kg which provides a free fall time of 23.5 
s. Note from the figures that the free-fall span contour line is about parallel to the 1.4-m 
external diameter line. This situation implies that we could move the design point along 
those two lines by increasing (with ballast) the capsule mass and increasing the free-fall 
time. Consequently, a cryostat of given length can provide longer free fall times by 
simply making the capsule hcavier with ballast. The free-fall time can be increased by 1 
s for every 250-kg ballast (or other equipment) added to the capsule up to the point where 
the upper mass limit is reached. The low-speed ballistic coefficient of the capsule will 
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vary from about 6500 kglm’ for a capsule mass = 1000 kg to 13.OOO kglm’ for a capsule 
mass of 2OOO kg. 
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Figure 38 Cost function in the capsule parameter space (Steel cryostat) 

The previous choice of parameters is also valid for a Steel cryostat with the only 
difference that the design point for the lower value of ballistic coefficient (i.e., 6500 
kglm’ which is associated with a mass of 1000 kg) is closer to the left boundary, defined 
by buckling. The design point moves away from that boundary for higher values of the 
low-speed ballistic coefficient. 

This “design concept” optimization does not intend to exhaust the design options for 
the capsule which will have to be revisited many times before the design is frozen based 
on additional system analyses. However, this process is a valid starting point to provide 
preliminary numbers for the analysis to be conducted by our cryostat subcontractor. The 
optimization process also provides a framework that lends itself to future refinements for 
evaluating system design parameters vis a vis performance input requirements and 
engineering constraints. 
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UPDATED REFERENCE CONFIGURATION AND DROP TIME 

Capsule mass and Size 
e 

One of the important results of the analysis carried out is that the small vacuum 
chamber at the top of the capsule has been eliminated in favor of a fully cryogenic 
vacuum chamber (see Figure 39). The new solution eliminates the problem of the gravity 
gradient produced by the small cryostat in the proximity of the detector and also provides 
more clearance to the instrument package during the early stage of free fall. 

Spin and release 
mechanism 

Instrument package 
before release 

Cryostat 

Figure 39 Schematic of capsule with instrument package attached beforc release 
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The new configuration also has the advantage of using a more conventional design of
the cryostat than the old reference design with the small LHe cryostat.

The preferred size of the vacuum chamber/cryostat was identified as a cylinder with

internal diameter of 1 m and an internal height (at the cylinder edges) of 2.1 m which

results in an external diameter for the capsule of about 1.4 m and a free-to-chose capsule

length of roughly 5.6 m. Preliminary data on large cryostats (from Janis Research),
indicate that the mass of a cryostat of the size considered above will fit well within the

mass limit of the system. Such chamber/cryostat will allow free fall times in the range
24-28 s depending on the amount of ballast added to the capsule.

The overall capsule mass could start at a minimum value of about a 1000 kg which

provides a free fall time of about 24 s. The free-fall time can be increased by 1 s for

every 250-kg ballast (or other equipment) added to the capsule up to the point where the a

(limit) mass of 2000 kg is reached. The low-speed ballistic coefficient 130of the capsule

will vary from about 6500 kg/m 2 for a capsule mass = 1000 kg to 13,000 kg/m 2 for a

capsule mass of 2000 kg. Correspondingly, the free fall time will vary from about 24 s to
28 s.

Capsule Drop Time

The free fall time of the instrument package inside the capsule was computed for several

values of the low-speed ballistic coefficient in the previous sections. Figure 40 depicts

(again) the capsule drop distance and Mach number vs. drop time.

4

3

2

...... Capsule drop (km) i .'_
.............. Capsule Mach number .........................................!.............;/--i

i •* 7

i e 'P•

! •e

................................................................ ! ....................... o_,_...............................................

! oo° Z
oo

i i
0 5 10 15 20 25 30

Time (s)

Figure 40 Capsule drop and Mach number vs. drop time
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Followingthecomputationof thepreferablerangeof valuesfor thecapsulemassand
size,Figure41showstherelativedistancecoveredbytheinstrumentpackageduringfree
fall with respectto thecapsulefor a low-speedballistic coefficientrangingfrom 6500
kg/mz to 13500 kg/m 2.

These results clearly indicate that a capsule of relatively compact size can provide a

free fall time between 24 s and 28 s with a capsule mass ranging from 1000 kg to 2000

kg, respectively. The higher value of the mass is for the same capsule with ballast.
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Figure 41 Relative vertical distance vs. free fall time for limit values of interest of
ballistic coefficient. Dots mark the expected operating points for the light capsule (M =

1000 kg) and ballasted capsule (M = 2000 kg).
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Figure 42 Relative lateral displacement due to wind shear vs. free fall time. Dots mark

the expected operating points for the light capsule (M = 1000 kg) and ballasted capsule
(M = 2000 kg).

An internal diameter of the capsule of 1 m was also computed from the optimization
process. This diameter determines the tolerance to wind shear acting sideways on the

capsule. Figure 42 shows the lateral displacement of the capsule with respect to the free-
falling instrument package vs. free fall time for the limit values of interest for the low-

speed ballistic coefficient. The value adopted for the wind shear of 0.005 s4 is equivalent

to a vertical gradient of 10 knots per km. This value is twice as high as the maximum
wind shear reported xxx_for the Air Force balloon base at Holloman, New Mexico. The

lateral displacements due to wind shear are relatively small in the parameter range of
interest. Furthermore, if the balloon is launched during the periodically-occurring wind

reversal times (in April-May and September-October) the vertical wind gradient is much
smaller than the value adopted for the computations shown here.
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MODAL ANALYSIS OF DETECTOR

Introduction

The following is the modal analysis of the differential accelerometer for the EP test.

The sensor is composed by two masses of different materials constrained to an external

case by means of elastic springs. The measurement is performed by monitoring the
displacement of the two masses with respect to the external case through the

measurement of capacitance variations caused by the displacement.

This analysis evaluates the eigenfrequencies and eigenmodes of the detector and the

sensitivity of the modes to variations in the detector parameters.
The model adopts six degrees of freedom, that is, one rotation and one translation for

each body. The system parameters considered for the sensitivity analysis are masses and
moments of inertia of the bodies, stiffness of the springs and their ratio.

The influence of these parameters is evaluated on both the separation of the natural

frequencies and the vibrational modes, particularly for what concerns the differential and
common modes of the detector.

Detector Dynamics Model

The detector consists of two sensing masses having their Centers of Mass (CM)
coincident with the CM of the external case. In the current detector model, one mass has

a dumbbell shape, while the other is a hollow cylinder. The shape of the flight detector

sensing masses will likely be different from this early choice. However, the shape of the

sensing masses does not affect the generality of this study. The two sensing masses are
constrained to the case by means of elastic springs, having a pivot axis parallel to the

longitudinal axis of symmetry of the three elements. Figure 43 shows a schematic of the
sensor model.

spin axis

pivot axis

Figure 43 Schematic of detector model.
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For thisanalysis,weassumethatthecapsulecontainingthesensoris fixed to the
Earthsurface,sothatonlythesensoris fallingintoit. Thisassumptiondoesnotaffectthe
generalityof themodalanalysis.TheZ axisis theaxisof fall andof theEarth'sgravity
acceleration.

The referencesystemCf is a frameparallelto the geographicX, Y, Z axesand
displacedby thevectorrz(seeFigure44). AnothercoordinatesystemD isattachedtothe
capsuleandhavingaxesparallelto thelocalnormalframe.At thisstageof theanalysis,
referenceframeD isassumedto coincidewiththe localnormalframeandthecapsuleis
assumedstationarywithrespecttotheEarth'ssurface.Thisassumptiondoesn'tcauseany
lossof generalityfor themodalanalysis.Thecoordinatethatdescribesthefall of thecase
alongthez axisisrz(t),wherer is thepositionvectorthatidentifiesthebodyC (external
case)withrespectto thecapsuleand,finally,z indicatestheaxisof fall.

x z

Cf reference frame

Geographic frame
X

sensor case

Figure 44 Local normal (geographic) and Cf frames

The body coordinate systems x, y, z are centered at the body CM, and fixed with the

body itself. Each system has the x axis along the longitudinal axis of symmetry,

corresponding also to the spin axis while the y and z axes are radial axes rotating with the
body.

A rotational and translational degrees of freedom have been considered for each

mass. More precisely, the x rotation about the CM of each mass, and the y translation

referred to the xyz frame. Therefore each body can rotate about the x axis through its CM
and can translate along the y axis of our reference frame. Figure 45 shows the possible
movements of each body.
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Figure 45 Degrees of freedom of each body

d

External forces

The motion of the sensing mass consists of a rotation 0(t) about the pivot axis (related

to the torsional stiffnesses of the springs) and a translation y(t) that depends on the
flexural stiffness of the springs. The flexural stiffnesses are typically much greater than

the torsional ones. The distance d in the figure identifies the distance between the CM of

the sensing mass and the pivot axis.

The external forces are written in the Cf reference flame, and consist of elastic forces.

The elastic forces are produced by the springs connecting the sensing masses to the
external case, and consist of a torsional torque and a force. In this analysis we assume

that the rotational displacements are small, so that the displacement of the point S along

the y axis due to a rotation around the CM is simply equal to Od [i.e., we assume that

cos(0) = 0].

The differential displacement of the point S between body A and body C and the

elastic force along the y axis are therefore:

AyA = YA- 0A'dA -- (Yc - 0c'dA)

FyA = -kyA'AYA = - kyA (YA -- 0A'dn -- YC + 0c'dA)

Where YAand Yc, are the displacements along the y axis with respect to the Cf frame,

0A and 0c are the rotations about the x axis of masses A and C, respectively, ky A is the

flexural stiffness along y of the spring connecting body A to the case C.

The elastic torque about the CM of A is:
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NA= --k,A(0A--0C) -- kyA'da'AyA = -k_ (0A -- 0C) -- kyA'dA(YA -- 0A'dA -- YC+ 0c'dA)

Where k_Ais the torsional stiffness of the spring connecting A and C.

Similarly, for the other two bodies we have:

FyB= -kyB'AyB = --kyB(YB-- 0B'dB -- YC+ 0c'dB)

NB = -ka3 (0B - 0c) - kyB'dB'Ay B = -lqB(0 B-- 0c) - kyB'd B (YB -- 0B'dB -- Yc + 0c'dB)

Fyc = -kyA (Yc- 0c'dA -- YA+ 0A'dA) -- kyB(Yc - 0c'dB - YB+ 0a'dB)

N c = -k_ (0c- 0A) -- kyA'dA(Yc - 0c'dc - YA+ 0A'dA) -- k_(0B -- 0C) -- kyB'dB(yB -- 0B'dB

- Yc + 0c'dB)

These equations will be used in the next section to compute the stiffness matrix.

Modal Analysis

The mass and stiffness matrices are computed in this section. It has to be noted that
out of 18 degrees of freedom (DoF) associated with the translational and rotational

motion of the three masses only six of them are describing the motion of the degrees of
freedom of interest. Specifically, only the translations along the y axis and the rotations

about the x axis have to be considered for each body because the other motions do not
affect the measurement. The state vector involved is, therefore, as follows:

X=[YA YB YC OA OB OC ]T (53)

which contains the translations along y axis and the rotations about the principal x axis of
each body.

The mass matrix is a diagonal matrix in a system of rigid bodies as follows:

M

m A 0 0 0 0 0

0 mB 0 0 0 0

0 0 mc 0 0 0

0 0 0 IAx x 0 0

0 0 0 0 IBx x 0

0 0 0 0 0 Icx x

(54)

The stiffness matrix, obtained from thc force and torque equations by using the
displacement method, is:
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K _

ky A 0 -ky A -dAky A 0 dAky A

0 ky B -ky B 0 -dBky B dBky B

-ky A -ky B kyA + ky B dAkyA dBkyB -dAkyA - dBky B

-dAky A 0 dAky A ktA + d2kya 0 -ktA - d2kyA

0 -dBky B dBky B 0 ktB + d2kyB -ktB - d2kyB

dakyA dBkyB -dAkya -dBkyB -ktA -d2AkyA -ktB -d2BkyB ktA + ktB + d2 kyz + d2 kyB

(55)

We can observe that for an external body that is not constrained in its flee fall, two

rigid motions are possible, that is, the rigid body rotation around the x axis of the Cf
flame, and the rigid body translation along the y axis. In order to carry out an analysis of

the natural frequencies and natural modes of the system we can eliminate these two rigid

motions so as to preserve only the elastic modes. This can be done by expressing one
rotational and one translational coordinate of a body as a function of the corresponding
coordinates of the other two bodies.

A vector having the three translations equal to a constant and the three rotations equal

to zero is a solution of the eigenproblem, so that this vector is an eigenvector.

Consequently, all the others eigenvectors must be orthogonal to this one to yield:

{_o} _ [M]{_} = 0

where _0 is a rigid eigenvector, and • is another eigenvector. After evaluating the

matrix products we obtain:

_0(mAO, + mBO2 + mc_3) = 0

where now O, is the i-th component of a general eigenvector. Because _ = fx_, where xi

is the i-th component of the vector x and f is a constant equal for all the components, we
can also write

mAy A+ mByB+ mcy c = 0

which allows to express one translational coordinate of a body as function of the
translations of the other two. It can also be noted that in deriving the former equation we

have obtained the conservation of the linear momentum for any elastic motion.

We can obtain similar expressions for the rotational case as follows (from now on we

drop the subscript "xx" in the moments of inertia):

I A 0 A 4" IB0 B '4" Ic 0 c = 0

We can now express the coordinates of a body as
coordinates of the other two bodies. We can write therefore

function of the analogous

{x} = lCl{x_}
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wherex is thecoordinatevector,Cisamatrix,andxeis thenewcoordinatevectorhaving
thetwocoordinatesof abodyexpressedasfunctionof theothers.In ourcase,wehave
eliminatedthecoordinatesof bodyC,obtainingthefollowingmatrix[C]:

C_

1 0 0 0

0 1 0 0

mA mB 0 0
mc m C
0 0 1 0

0 0 0 1

0 0 IA IB

Ic lc

(56)

and the vector X e being

Ira]
X e _-/Y"/

oB

(57)

The stiffness and mass matrices can be modified using the new coordinates by

[Ke] = [C]r[K] [C]

[Me] = [fIT[M] [C]

where Me and Ke are the transformed mass and stiffness matrices which are not shown

here for the sake of brevity. The dynamical matrix [D] = [Me]-I[Kj that is needed to
compute the eigenfrequencies of the elastic modes is as follows:
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O

- \ mA mc / mAmB ICmA ICmA

ka'BmA kyB( l_..__+ l__l dBk3'BIA dBkyB(IB+Ic)
mBmc [ lmBmc } ICmB ICmB

dAkya(mA+mC) dAkyAmB (IA+Ic)(ktA+d2p'3,A) lB(ktA+d2kva)

IAm C IAmC IAIc IA1C

dBk3,Bma dBkyB(mB+mC) 1a(ktB+d2kyB) (1B+Ic)(ktB+d2k3.,B)

IBm C 1BmC IBIc IBIc

(58)

Once solved the eigenvalue problem for the constrained system (i.e. with the previous

dynamical matrix), the total eigenvector including also the two variables eliminated can

be obtained simply premultiplying the eigenvector obtained by the matrix [C].

Eigenvalues and Eigenvectors.

Using the dynamical matrix evaluated before an analysis of the eigenvalues and

eigenvectors have been carried out in order to evaluate the influence of parameters on the

natural frequencies and modal vectors.

The parameters are the following:

MA = mass of body A

MB = mass of body B

Mc = mass of body C

IA = moment of inertia of body A about the spin axis (x axis)

IB = moment of inertia of body B about the spin axis (x axis)

I c = moment of inertia of body C about the spin axis (x axis)

dA = distance between the CM and the constrained point of body A

da = distance between the CM and the constrained point of body B

k,A = torsional stiffness of spring connecting bodies A and C

km= torsional stiffness of spring connecting bodies B and C

kyA = bending stiffness of spring connecting bodies A and C

kyB = bending stiffness of spring connecting bodies B and C
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Numerical values have been assigned to these parameters to evaluate natural

frequencies and eigenvectors. Subsequently, the values of key parameters have been
changed while keeping the others constant.

The values used for the first evaluation are as follows:

mA = mB = 5 kg

IA = IB = 0.009 kg-m 2 (which corresponds to an external radius of body A of 0.06 m
and a mass mA)

Ic = 1 kg-m 2

dA =dB = 0.06 m

k_A= ktB = 9.593 Nm/rad (corresponding to a first torsional frequency for a single-
degree-of-freedom system of 3 Hz)

kyA = kyB = 18000 _t2 N/m (corresponding to a first lateral frequency for a single-
degree-of-freedom system of 30 Hz)

Using these values we obtain the following values:

f_ = 2.99 Hz; f2 = 3.29 Hz

f3 = 52.13 Hz; f4 = 55.22 Hz

and the associated eigenvectors:

v I = {0.0427736, -0.0427736, 0.705812, -0.705812}

v2 = {0.0326524, 0.0326524, 0.706352, 0.706352}

v3 = {-0.0209932, 0.0209932, 0.706795, -0.706795}

v 4 = {-0.0210127, -0.0210127, 0.706795, 0.706795 }

Remembering that the eigenvector components represent in order YA, YB, 0A, 0B, we
can make a few considerations about the natural modes.

The first vector is composed of a translation of the masses and a rotation about the

CM. The sign is opposite for the two masses, so that one moves in opposition to the

other while the signs of YAand 0A are the same so that the pivot point tends to remain in

its original position. In the first mode body C is at rest, the motion being auto-
compensating. In summary, the first mode corresponds to a differential mode of the two
test masses.
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0B

Figure 46 First natural mode (differential)

The second vibrational mode has a similar type of motion, the only difference being

that the two proof masses move in the same direction• In this mode body C moves in the

opposite direction of the proof masses in order to equilibrate the motion.

i i 0B

l 0A

Figure 47 Second natural mode (common)

The third and fourth modes involve the lateral stiffness of the springs as the sign of

the rotation and translation of each mass is now opposite, so that the displacement of the

constrained point is now the sum of the y translation and of 0dA term (i.e., YA-- 0AdA). The

y translation depends on the lateral stiffness of the springs that is much higher than the
torsional stiffness. The first two modes are analyzed in detail in the following.
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Parametric Analysis

K_,influence

The following plots show the variation of the first and second natural frequencies as

varies. In each plot the components of the eigenvector is also plotted.
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Figure 48 Dependence of first natural frequency on ky
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Figure 49 Dependence of second natural frequency on ky
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In the previousplotswecannoticethatthe naturalfrequenciesincreasewith kr,
havingasasymptotes2.99and3.29Hzrespectively.Increasingthevalueof kytherefore
contributesto separatingthetwo frequenciesupto thevalueof 0.3Hz. Thefollowing
plot showstheinfluenceof kyonthedisplacementof theconstrainedpoint.
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Figure 50 Dependence on ky of translation of constrained point in first mode
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Figure 51 Dependence on ky of translation of constrained point in second mode

As ky increases, the displacement of the point S (constrained point) decreases, so that
the differential displacement in mode 1 is reduced and likewise for mode 2 (see Figs 50

and 51).
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I c influence
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Figure 52 Dependence of first natural frequency on Ic
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Figure 53 Dependence of second natural frequency on Ic

The value of I c affects the frequency of the second mode; decreasing the value of Ic

the natural frequency increases, yielding also a larger separation between the two first

frequencies. Ic has no influence on the displacement of the pivot point.
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m c influence

The effect of rnc on the frequencies considered is to increase the separation of the

frequencies as mc decreases, similarly to the effect of Ic. The plot below shows this effect

versus the mc/m a ratio.

nat freq [Hz]

51

\
4.5 k

\
4

3.5

2 3 4 5 6

mC/mA

Figure 54 Dependence of natural frequency separation on mc/m A

Combining the effect of Ic and rnc, the separation of the frequencies increases from a

value of 0.3 Hz when Ic and mc are much greater than IA and mA, to a value of 2.17 Hz
when the ratios Ic/I A approaches unity.

Relative variation Of la, m A, k_a, ktA

We perturb the values of the parameters ky A, I A, ktA, d A, mA of the two sensing masses
in order to test the influence of possible imperfections in the mechanical and physical

characteristics of the sensing masses and springs. The ratios PA/PB, where "p" indicates

one of the above mentioned parameters have been varied between _+5% of the nominal
value.

The main influence of these parameters is on the difference of displacement of the
two sensing masses in the common mode (mode 2), resulting in a differential

displacement. The plot below shows the differential displacement (YA-YB)/YAversus the
PA/PBratio.
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Figure 55 Influence of bodies A and B parameter's ratio on the differential displacement

As it can be seen, the most influent parameter is the distance of the constrained point,

and subsequently the mass, and inertia ratio. This kind of dependence is explained by the

fact that d A changes the moment of inertia around the pivot axis with a squared
dependence; mA influences both the translational and the rotational motion, while I g

affects only the rotational degrees of freedom (DoF).

Concluding Remarks

The analysis performed allowed to describe the differential accelerometer's modes

and frequencies and their dependence on the inertial and mechanical parameters. The
system has been modeled using 6 DoF, the rotation around the x axis and the translation

along a radial axis for each body.

The first two frequencies and eigenvectors have been analyzed in detail because these

modes of rotation around the pivot axis affect the acceleration measurement the most.

The separation of these two frequencies depends mostly on the mass and inertia moment

of the C body, and slightly on the lateral stiffness of the springs. The lower C mass and

inertia are, the greater the separation between the first two frequencies (if IC/1A = I =

mc/m a the difference is 2.17 Hz for a value of ky = 18000n 2 , while it is only 0.3 Hz if

Ic/I A= 110 and mc/mn = 6). Increasing ky contributes to reducing the displacement of the
pivot axis both for mode 1 and mode 2.

A variation of the parameters ratio between body A and B has also been checked, to
evaluate the influence of possible imperfections of the inertial and mechanical

characteristics of the proof masses.
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Thedifferentialdisplacementof theCM of thesensingmasseshasbeenanalyzed.
ThektA/ktBratiohasthegreatestinfluence,causingaAydifferenceof 5%astheprevious
ratiovariesby 0.7%. ThekyA/ktRratio hasa similar influence. TheratiomA/mahas
roughlyhalftheinfluenceof thespringstiffnessratio,causinga5%Aydifferenceasthe
ratiovariesby1.3%.TheinertiaratioIA/IBproducesa5%variationof theAydifferential
displacementas it variesby 2%from theunit value. Finally the lateralstiffnessratio
kyA/kyBhasanegligibleinfluencecomparedto theothers,i.e.,approximatelytwo orders
of magnitudeless,reachinga0.025%variationof Ayastheparameterratiovariesby 1%.
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DYNAMICS ANALYSIS OF INSTRUMENT PACKAGE/DETECTOR

Introduction

The following analysis is a study of the accelerometer and instrument package
dynamics. Two different designs of sensor have been taken into consideration as follows:

(1) a sensor with two sensing masses and a case (three bodies); and (2) a sensor with one

sensing mass (made of two different materials) and a case. In both types the measurement
is carried out by monitoring the differential displacements between masses, through the

measurement of capacitance variations caused by those displacements.

In this study we derive the differential equations of motion for each sensor and carry

out numerical integrations of cases of interest, starting from different initial conditions of
the positions of the centers of mass (CM) and initial rotational velocities of the bodies in

order to evaluate the influence of those parameters on the differential output of the
accelerometer.

Each body is defined using all its six degrees of freedom (DoF) and elastic forces and

torques are applied to each of them at the attachment points of the constraining springs.

Description of sensor configurations

Three-body sensor.

The sensor is composed by two sensing masses having the CM coincident with the
CM of the external case. One mass has a dumbbell shape, while the other is a hollow

cylinder. These two masses are attached to the case by means of elastic springs, having a
pivot axis that is parallel to the longitudinal axis of symmetry of the sensor. All the

bodies spin about the symmetry axis x (during the fall). Figure 56 shows a schematic of
the 3-body sensor.

Y

spin axis

pivot axis

Figure 56 Schematic of three-body sensor
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The motionof thesensoris essentiallya rotationof thesensingmassesaboutthe
pivotaxis. Thetranslationalmotionof thesensingmasses,whichdependsonthehigh
lateralstiffnessof thespringsismuchsmallerthantherotationalmotion.A rotationof
themassimpliesa variationof thedistancebetweenthesensingmassandtheexternal
casethatchangesthecapacitanceof themotionpickupsystem.

Two-body sensor.

The two bodies sensor consists of an external case (body A) and an internal sensing

mass. The internal mass is actually formed by two equal masses of different materials

which are rigidly attached so as to behave like a single rigid body. The internal mass is

connected to the external mass by means of elastic springs which have a lateral stiffness

much higher than the torsional one. All the bodies spin about the symmetry axis x

(during the fall).

Pickup plates of capacitor

spin axis

Pivot axis

Figure 57 Schematic of two-body sensor

A violation of the EP during the fall would cause a rotation about the pivot axis of the

sensing mass with respect to the sensor case. The measurement is then carried out by

detecting the differential displacement (and therefore the capacitance variation) of the
central disk of body B with respect to the four fixed capacitor plates attached to body A

(see Figure 57). The capacitor plates are arranged in such a way that a rotation of B

about the pivot axis z unbalances the capacitive measurement bridge and produce an

output signal.

Reference frames

A body reference frame has been attached to each body. The attitude of each body is

identified by Euler's angles, following the sequence 1-2-3 (i.e., by building the rotation

matrix using sequential rotations about x, y, and z axes).
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Therelationshipsbetweenthedifferentreferenceframeshavebeenwrittenby means
of rotationmatricesandtranslationvectors.All thematricesaredescribedindetailsin the
following. TheROAmatrix transformstheinertialframe(Xo,Y0,Z0)into thebodyA
referenceframe(X^,YA,ZA);

Z A

_-_Body A

XZ___ -_YIA

,o

Figure 58 Inertial and body reference frames

The body frame is attached to the geometrical center of the body which, in ideal

conditions, coincides with the CM of the body. The position of the CM (of body A for
example) in the A reference frame is defined by {XcMA,YCMA,ZCMA}. The coordinates of

the origin of the A frame (RA) with respect to the inertial 0 frame are: {XA(t), yA(t), ZA(t)}.

The matrix yielding the transformation from system X0, Y0, Zo to XA, YA, ZA is
composed by the following sequence of transformations:

- rotation 0xA(t ) around X axis;

- rotation 0yA(t ) around Y' axis (transformed Y0 axis after 0xA(t ) rotation);

- rotation 0_A(t) around Z" axis (transformed Z0 axis after 0xA(t ) and 0yA(t ) rotations);

- translation R Aprojected along the three axes XA, YA, ZA.

The rotation matrix [RoA] and the translation vector {RA} from system 0 (inertial) to

system A (body A) are the following:
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• C(OV A )C(OzA )

t s(OyA)

c(OzA)S(OxA)S(OyA) + c( OxA)S(OzA)

C(OxA)C(OzA) - S(OxA)S(OyA)S(O_ )

--C( OvA )S( O xA )

-C( OxA )C( OzA )S( Ova ) + S( OxA )S( OzA )]

c( )s(OxA)+Ci OyA )I
C( Oxa )C( OvA ) ]

where the superscript identifies the relevant reference frame. The translation vector is the

RA vector, expressed in the A frame. This vector can be computed as follows:

RA = [RoA]{-XA -YA "ZA}T

Where the vector {-XA, -YA, -ZA} is the opposite of the vector {RA} expressed in the 0
frame.

We have:

[--c(O;,A )C(OzA )XA - [C(OzA )s(O(A )S(OvA ) + C(OxA )S(Oz_t )]YA + [C(Oxa )c(Oza )S(OvA ) -- S(OxA )S(OzA )17"A]

{ezA}=i C_A)S(_-_4)_A -[_(_rA)_(_.zA)-Si_A)S(_vA)S(_zA)_y4 -_(_A)S(_rA)_C(_rA)S(_vA)S(_z_A)]ZA

[ --S(OvA)XA + C(OvA')S(O_.A)V A --C(OxA)C(OvA)S,A " ]

For the opposite transformation, which leads from the body A coordinate system to
the inertial frame, we use the transpose of the rotation matrix [RA0] = [RoA]T and the

vector is simply the RA vector expressed in the inertial coordinates {XA,YA,ZA}.

We have

[RA0] =

C(OxA)C(OvA)

c( O_ )S(OxA) + c( OxA)S(OsA)S(O_ )

-c( O,A)C(O_ )s( O,,A) + S(OxA)S(O:,a)

--c(OyA)S(OxA)

C(OxA)C(OzA) --s( Oxa )s( OvA)S(O_ )

C(OzA)S(OxA)S(OvA) + C(OxA)S(Oz.A)

s( OvA ) ]

-C(OvAiS(OzA) I

C(O)IA )C(OzA ) ]

fxA]{R°} -- YA

ZA

In summary, the transformations are as follows:

Inertial to body A:

[RoA].{r °} + {RA A}

Body to inertial:

IRa,,]. {r a} + {RA°}

The same procedure is followed for the other bodies.
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Degreesof Freedomandequationsof motion

The transformation matrices have been written for each body for deriving the
equation of motion for the different bodies. The body coordinate systems are centered in

the body's geometrical center, and fixed with the body itself. The position of the CM is

described using three coordinates (XcMA,YCMA,ZCMAfor body A). Each system has the x

axis along the longitudinal axis of symmetry, corresponding also to the spin axis, the y
and z axes are radial axes rotating with the body.

Each body has all the six degrees of freedom, i.e., the three translations of the body
frame origin, and the three rotations according to the Euler's angles described above.

To derive the equations of motion the translation accelerations of the CM and elastic

forces have been written in the inertial system. The rotational equations are then
projected onto the body axes.

Translational accelerations

In the following we describe the procedure for deriving the equations of motion by

taking the two-body sensor as an example. The procedure to derive the equations for the
three-body sensor is exactly the same with the added complexity of a higher number of
equations.

The CM vector in each body's reference frame is:

Body A: {rA} = {XcMA YCMAZCMA}r

Body B: {re} = {XcMB YCMBZCMB}T

The translational acceleration expressed in the inertial reference is obtained using the
formula:

{aA} =[I_Ao]'{rA}+ 2[_AO]'{_A}+[RAo]'{'A}+

Where

{aA} is the acceleration of body A in the inertial frame;

[RAo ] is the rotation matrix from A to inertial frame;

{rA} is the coordinates vector of body A CM in the A frame;

{RA°} is the translation vector expressed in inertial coordinates

(°) indicates the time derivative and the dot (.) matrix multiplication.

The same equations are used for the other bodies.
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Elastic Forces

To evaluate the elastic forces we define first the points where the springs are attached

to each body. The position of these points are expressed in body frame. The distance
between connected points is then computed from the actual position during the motion,

projected in the A frame, and multiplied by the stiffness vector {kxA, kyA, kzA}- By

following this procedure, it is possible to assign different stiffness to each degree of
freedom. Finally the elastic forces are projected onto the inertial coordinate system, and

added to the equation of motion. The points connected by the springs are as follows (all

distances are in meters):

{PM} = {0, 0, -75x103} r

{PA2} = {0, 0, 75X10"3} v

{Pal} = {0, 0, -65X103} v

{PB2} = {0, 0, 65X10-3} v

The initial lengths of the two springs constraining the motion are as follows:

{1,} = {PM- PB,} = {0,0,-lOxI0"3} T

{12} = {PA2-- PB2} = {0, 0, 10X10"3} T

The figure below shows the position of the points where the forces are applied

Point A 1

Point A2_.,_

Point B2 Point B I

Figure 59 Locations of attachment points
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{F,A) = [RAo] .([K]. ({PA,}-- [ToA].{TBo-PB,}--{1,}))

{F2A}= [RAo]•([K]. ({PA2}--[ToA]-{TBo-PB2}--{12}))

{FA}= {F,A}+ {F2A}

In the abovenotation the operator"ToA.X"indicatesthe combinationof the
multiplicationbytherotationmatrix[RoA]appliedtothevector{x} plusthetranslationof
thevector{RAA} which yields:

{ToA.X } = [RoA].{X } + {RA A}

The expression TOA-(TBo.pBI)projects the coordinates of the point Psi (expressed in the

body B frame) onto the body A coordinate system. Subsequently, the force is projected
onto the inertial frame using the [RA0] matrix. A similar procedure is used to evaluate the
forces acting on any other body pairs.

The equations of translational motion for the two bodies A and B are:

mA {aA} -- {FA} = 0

mB {aB} - {FB} = 0

where mA and mB are the masses of body A and B, aA and aBare the accelerations, and FA
and FB are the elastic forces:

{FA} = {F,A } + {F2A}

{FB} = {Fro} + (F2B}.

Rotational accelerations:

The angular velocity of each body is computed by using the rotation matrices that

transform the coordinate system from the inertial to the body frame and conversely for

the opposite transformation. The rotational velocity matrices of bodies A and B are
derived by using the Cartan's formula as follows:

where [ROA]and IRA0] are the rotation matrices from coordinate system 0 to A and vice-
versa. [RoB] and [RB0] are the correspondent matrices for body B.

It should be noted that the former expression lead to the skew symmetric matrix of

the angular velocity from which the components of the angular velocity vector {tOA}can

be readily extracted.
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Therotationalinertia forces are obtained using the formulas:

[IA ]'{O_A} + [O)A ]'[1A ]'{O)A}

Where {_%} and [e%] represent the angular velocity vector and matrix, respectively,

for body A (and similarly for body B), [IA] and [IB] are the inertia matrices for body A
and B which, assuming principal axes, have the form

00][1A]" 0 ]Ayy 0, lIB]----0 ]Byy

0 0 IAzz 0 0 1Bzz

Elastic torques

The elastic torques acting on each body are computed by using the definition of the

attachment points and the expression of the elastic forces previously defined. The

expressions of the torques in the body reference frame are as follows:

{TA} = {PA,} X ([RoA] • {F,A}) + {PA2} X ([RoA]. {F2A})

{TB) = {PB_) X ([ROB] .{Fro}) + {PB2} x ([ROB]. {F2_})

where x indicates the external product of vectors.

Finally, the expressions of the rotational equations of motion are:

[IA]'{_OA} +[O)A]'[IA]'{O)A}--{TA} =0

+[,,,].[t,].{.,,)-{:,',):o
(59)

The equations of motion for the three bodies sensor are evaluated at the same way as
for the two bodies. The same quantities are derived and the same structure for the

equations is obtained. Figure 60 shows the positions of the constrained points for the
three bodies sensor.

The points PCAI, PCA2,PCBt and PCB2are the points of the external case C connected

with the points PAt, PA2,PBt, PB2, respectively. In this case four springs are used to connect

the two bodies to the case (two springs per each body).
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Figure 60 Locations of attachment points

The coordinates of the points are the following (each point is expressed in its own
body system):

{PM} = {-40x10-3, -60X10-3, 0} T

{PB1} = {"250x 103, -60x 103, 0} T

{PcAI}= { -50X 10-3, -60X 10-3, 0} T

{PcB_} = {-270x 103, -60x 10 -3,0} T

{1A,} = {PA, -- PCA,}

{IBI } = {PB1 -- PCB! }

{PA,} = { 40x 10"3, -00xl0-3, 0} T

{PBI} = { 250x103, -60x 10-3, O}T

{PcA, } = {50X 10 3, -60X 10 .3 , O} x

{PcBI} = {270X l0 3, -60X 10 -3, 0} T

{lA2} = {PA2 -- PCA2}

{IB2} = {PB2 -- PCB2}
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Two Bodies

The integration of the equations of motion has been performed using different values for

the CM position and initial angular velocity of body A.

A frequency analysis has been performed for each result, to evaluate the frequency
content of the differential rotation around the z axis, which leads to the detection of a

differential signal by the capacitors.

The parameters in the equations are the following:

m A

mB

lAx

lAy

lAz

IBx

lBy

ls_

k_

ky

k_

koz

XCMA

YCMA

ZCMA

XCMB

YCMB

ZCMB

= mass of body A

= mass of body B
= moment of inertia

= moment of inertia

= moment of inertia
= moment of inertia

= moment of inertia

= moment of inertia

= lateral stiffness of

of body A about the x axis

of body A about the y axis

of body A about the z axis

of body B about the x axis
of body B about the y axis

of body B about the z axis

spring connecting bodies A and B

lateral stiffness of spring connecting bodies A and B

lateral stiffness of spring connecting bodies A and B

torsional stiffness of spring connecting bodies A and

= x position of CM of body A (in body A coordinates)

= y position of CM of body A (in body A coordinates)

= z position of CM of body A (in body A coordinates)

= x position of CM of body B (in body B coordinates)

= y position of CM of body B (in body B coordinates)
= z position of CM of body B (in body B coordinates)

(in A coordinates)
(in A coordinates)

(in A coordinates)
B

The variables for the equations (DoF) are:

XA(t) = X

yA(t) = y
ZA(t) = Z

xs(t) = x

yB(t) = y

zs(t) = z
0xA(t ) = X

0yA(t) = y
0zA(t) = Z

0xS(t) = X

0rB(t ) = y
0zB(t ) = Z

coordinate of the geometrical center of body A (in inertial coordinates)

coordinate of the geometrical center of body A (in inertial coordinates)

coordinate of the geometrical center of body A (in inertial coordinates)

coordinate of the geometrical center of body B (in inertial coordinates)
coordinate of the geometrical center of body B (in inertial coordinates)

coordinate of the geometrical center of body B (in inertial coordinates)

rotation of body A

rotation of body A

rotation of body A

rotation of body A

rotation of body A

rotation of body A

Numerical values have been assigned to the parameters and then a study of the influence

of the position of the CM with respect to the geometrical center of each body (CM
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parameters),alsocombinedwith aninitial angularvelocityof bodyB.Thevaluesused
for thefixedparametersarein thefollowing.

We analyzein thefollowingrepresentativecaseswithprogradeprecession(i.e., ICx >
ICy). Thereasonfor favoringprogradeprecessionoverretrogradeprecessionis that
progradeprecessionbringsaboutsignificantlysmalleraccelerationsdueto imperfect
release(seelateron)thanretrogradeprecession.

Two-Body Dynamics Simulation

Prograde precession

lAx < lAy

mA = 30 kg, mB = 1 kg,

lAx = 95/100 kgm 2, IAy = 146/100 kgm:, IAz = 146/100 kgm -_,
IBx = 17/100, IBy = 17/100, IBz = 17/100,

kx = 45000 N/m, ky -> 35000 N/m, kz -> 35000 N/m,
kx2 = 45000 N/m, ky2 = 35000 N/m, kz2 = 35000 N/m,

k0x = 1000 Nrn/rad, k0y = 1000 Nm/rad, k0z = 54 Nm/rad;

spin frequency = 0.3 Hz

initial velocity 0z of body A = 10 2 rad/s

initial nutation angle = 0

xCMA = 0, yCMA = 0, zCMA = 0,

xCMB = 10 "6 m, yCMB = 0, zCMB = 10-6 m

2.99716

7.38688

8.08957

42.8045

42.8045

48.5357

Figure 61 Natural frequencies
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Figure 62 0zA (rad) vs. time (s)
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Figure 63 FFT of 0,.A vs. frequency (Hz)
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Figure 64 O_ (rad) vs. time (s)
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Figure 65 FFT of 0_a vs. frequency (Hz)
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O.0004

O.0002

-0,0002

-0. 0004

Figure 66 0zB - 0zA (rad) vs. time (s)

O. 00035

O.0003

O.00025
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O.00015

O.0001

O.00005
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Figure 67 FFT of 0zB - 0zA VS. frequency (Hz)

O. 00002

0.000015

0.00001-

5xl 0-G

J

Spin frequency

0.1 0.2 0.3 0.4 0.5

Figure 68 Zoom of 0zB - 0zA FFT vs. frequency (Hz)
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Three-Body Dynamics Simulations

The parameters in the equations are as follows:

m A = mass of body A

mB = mass of body B

m c = mass of body C
lax = moment of inertia of body

lAy = moment of inertia of body
|Az = moment of inertia of body

IBx = moment of inertia of body

]By = moment of inertia of body
IBz = moment of inertia of body

Icx = moment of inertia of body

ICy = moment of inertia of body
Icz = moment of inertia of body

kAx =

kAy =

kAz =

kBx =

kBy =
kaz =

kox A =

kox B =

XCM A

YCMA =

ZCM A -_-

XCM B _-_

YCMB = y position of CM of body

ZcMB z position of CM of body B

XcMc x position of CM of body C
YcMc y position of CM of body C

ZcMc z position of CM of body C

A about the x axis

A about the y axis
A about the z axis

B about the x axis

B about the y axis
B about the z axis
C about the x axis

C about the y axis
C about the z axts

lateral stiffness of spring connecting bodies A and C (in C coordinates)

lateral stiffness of spring connecting bodies A and C (in C coordinates)

lateral stiffness of spring connecting bodies A and C (in C coordinates)

lateral stiffness of spring connecting bodies B and C (in C coordinates)

lateral stiffness of spring connecting bodies B and C (in C coordinates)

lateral stiffness of spring connecting bodies B and C (in C coordinates)

torsional stiffness of spring connecting bodies A and C

torsional stiffness of spring connecting bodies B and C

x position of CM of body A (in body A coordinates)

y position of CM of body A (in body A coordinates)

z position of CM of body A (in body A coordinates)

x position of CM of body B (in body B coordinates)
B (in body B coordinates)

(in body B coordinates)

(in body C coordinates)

(in body C coordinates)

(in body C coordinates)

The variables for the equations (dof) are:

XA(t) =

YA(t) =

ZA(t) =

XB(t) =

YB(t) =

ZB(t) =
Xc(t) =

yc(t) =

Zc(t) =
OxA(t ) =

x coordinate of the geometrical center of body A (in

y coordinate of the geometrical center of body A (in
z coordinate of the geometrical center of body A (in

x coordinate of the geometrical center of body B (in

y coordinate of the geometrical center of body B (in
z coordinate of the geometrical center of body B (in

x coordinate of the geometrical center of body C (in

y coordinate of the geometrical center of body C (in

z coordinate of the geometrical center of body C (in
x rotation of body A

inertial coordinates)

inertial coordinates)
inertial coordinates)

inertial coordinates)

inertial coordinates)

inertial coordinates)

inertial coordinates)

inertial coordinates)
inertial coordinates)
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0yA(t ) = y rotation of body A
0zA(t) = Z rotation of body A

0xB(t) -- x rotation of body A

0yn(t ) = y rotation of body A

0_B(t) -- z rotation of body A

0zc(t) -- z rotation of body C

0xc(t) = x rotation of body C

0yc(t ) = y rotation of body C

Prograde precession

ICx < ICy
spin freq = 0.3 Hz

values:

mA = 1 kg. mB = 1 kg, mC = 30 kg,
lAx = 17/100 kgm 2, lAy = 17/100 kgm 2, IAz = 17/100 kgm 2,

IBx = 17/100 kgm 2, IBy = 17/100 kgm 2, IBz = 17/100 kgm 2,

ICx = 95/100 kgm 2, ICy = 146/100 kgm 2, ICz = 146/100 kgm 2,

kAlx = 45000 N/m, kAly = 35000 N/m, kAlz -- 35000 N/m,

kA2x -- 45000 N/m, kA2y = 35000 N/m, kA2z = 35000 N/m,

kAqx = 61.68 Nm/rad, kAqy = 1000 Nm/rad, kAqz = 1000 Nm/rad,
kB 1x = 45000 N/m, kB 1y = 35000 N/m, kB 1z = 35000 N/m,

kB2x = 45000 N/m, kB2y = 35000 N/m, kB2z = 35000 N/m.

kB0x = 6168/100 Nm/rad, kB0y = 1000 Nm/rad, kB0z = 1000 Nm/rad

initial 0z of body C = 10-2 rad/s

Initial nutation angle = 0

xCMA = 10-¢'m, yCMA = O, zCMA = 10.6 m,

xCMB = O, yCMB = O, zCMB = O,

xCMC = O, yCMC = O, zCMC = 0
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42.1084

43.4894

4.39904

27.2175

2.99982

42.5542

3.48568

44.0754

48.344

50.0619

4.34997

26.7789

Figure 69 Natural frequencies

The simulations have been run for I00 s (which is higher than the actual value) for

the sole reason of providing a good frequency resolution for the FFF plots.

75x10-z f ]

5xl0-

2 .Sxl 0-

0 T,,1r,1T,Fi'v,,r T0 P'll
-7.5xlOlZ

Figure 70 ZA- ZC(m) projected in body C frame vs. time (s)
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Figure 71 FFT of z A - z c vs. frequency (Hz)
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Figure 72 Zoom of ZA - ZC FFT vs. frequency (Hz)
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Figure 73 zB - Zc (m) in C frame vs. time (s)
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Figure 74 FFT of ZB VS. frequency (Hz)
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Figure 75 zA- za (m) in C frame vs. time (s)
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Figure 76 FFT of ZA - ZB VS. frequency (Hz)
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Figure 77 Zoom of z A - zB FFF vs. frequency (Hz)
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Concluding Remarks

The analysis carried out allowed to evaluate the influence of CM position and initial
angular velocity errors in the dynamic of the 2-body and the 3-body sensors. The two

systems have been modeled using 12 DoF, and 18 DoF respectively (six dof for each
body).

2-body results

The position of the CM for body A (external case) did not affect the rotation about the z

axis (measurement axis), while the initial non zero condition on the angular velocity of
the same body caused a differential signal to be detected.

Analyzing the frequency content of the signal, though, no frequency peak was noticed at

the spin frequency (0.3 Hz), while the natural frequency for the rotation about the z axis
(3 Hz) and the precession frequency (0.18 Hz) were present.

These frequencies can easily be changed modifying the torsional stiffness about z axis

and changing the inertia ratio (IAz - IAx)/IAz, to which the precession frequency is
directly related.

Note that the spin frequency appears in the single 0zA or 0zB starting from an initial

angular velocity of body A about y or z axes, but it is rejected when the difference
between the two signals is taken.

Applying all the initial conditions together (both CM positions and angular velocities) led

to analogous results, resulting in a rejection of the spin frequency in the differential
rotation.

3-body results

Likewise, in the three-body detector the position of the CM of the external case (body C)

along the spin axis does not influence any of the variables (in the absence of gravity
gradients). The displacement of the CM along the axes y and z cause the excitation of the
y and z variables only, while the rotations are not affected. Moreover the differential

displacement is not excited.

An initial condition on the angular velocity (both along the y or z directions) excites all

the dof of the system, both individual and differential; the frequency pattern of the
variables doesn't show evidence of peaks at the spin frequency, neither in the individual,

nor in the differential component of the displacements.

After applying all the different conditions together, the frequency analysis again shows

that the differential signal (along z direction) doesn't show any peak at the spin
frequency, even if these peaks are present in the individual variables (y and z) due to

initial displacement of the CM of body C along y and/or z directions.
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DETECTOR REQUIREMENTS DEVELOPMENT

Model for the Gravitational Perturbations Acting on Proof Masses

Overview

The test body (proof mass), falling inside the capsule, is subjected to non-negligible

gravitational attraction by the capsule. In particular, the higher order gravitational

potential plays a major role because of the elimination of the zero-order potential due to

the equivalence principle.

The model consists of a spinning test body inside a capsule: hollow cylinder covered with

flat caps. The test body is released at the axis of the cylinder, and deviates from the axis

during its fall. Therefore, our task is to compute the gravitational force and torque acting
at the neighborhood of the fall. The fact that both the test mass and the capsule are closed

finite bodies, increases the complexity of the problem. We took advantage of the size of
the test mass; smaller than the cylinder radius, to derive an asymptotic analytical solution.

We are mostly concerned with the force/torque at the modulation frequency. In other
words, our model should evaluate the force/torque in a rotating body framc, rather than

the static field in the capsule frame of reference. For that purpose we built a semi-

analytical model. The main advantage of our model is its flexibility. It can handle any

configuration of test mass as well as any additional mass distribution in the test chamber.

The purpose of this work is two folds. We need a working gravitational model for future

simulation for the dynamics of the test body. We also need to choose the inertia

properties of the test body that minimize the gravitational disturbance.

In the following we presents the analytical approach, analytical results, numerical

analyses, and the interpretation of results. Appendices to this section are available in the

first Annual Report #2 xxxii for this grant. Appendix A explains the computer code.

Appendix B and C present analytical solutions for the gravitational attraction due to the

cylinder and the caps, and check the validity of our numerical model. Appendix D

proposes an approximation of the gravitational field and its gradient by using radial basis
functions.

General Approach

The purpose of this work is to model and analyze the gravitational attraction between

the capsule and the test body. There are at least three ways to approach this problem. The

first approach is to compute the force between each capsule mass element and a test body

mass element, and to perform a double summation on these forces. If N is the number of

capsule mass elements, and N B is the number of test body mass elements, then the

cardinality of the computation is N ® N B (the complexity of the computation is the

product of the complexity of a single element computation by the cardinality). The

second approach is a double integration over the bodies. The drawback of the first
approach is the heavy computational effort, especially if we need, in the future, an online
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computationin a dynamicalprocess.Theweaknessof the secondapproachis in the
cumbersomeanalyticalcomputation.Moreover,the integration will result in an
asymptoticseriesof complicatedfunctions.This will requireintensecomputation.In
addition,asymptoticseriesintroduceatruncationerrorintothecomputation.Weadopted
athirdapproachforthismodel.

Our computationalapproachis to considerthecapsuleasa discreteensembleof
lumpedmass,wherethe resultantforceand torqueactingon the testbody are the
cumulativeforceandtorquedueto eachcapsulemasselementwhile thetestbodyis
teratedwitha seriesexpansion.In otherwords,theinteractionis betweenafinitebody
and a point mass.This approachis a tradeoffbetweenthepreviousapproaches,its
cardinalityis N. The main advantage is the flexibility in modeling any capsule shape,
according to future requirements.

The purpose of the following computation is to come up with simple closed-form
analytical expressions, for the force and torque acting on the spinning test mass due to the
capsule gravitational attraction.

Gravitational Model

The gravitational potential for finite size bodies is:

dM
B

V = -G f f _dM

_t _ r o
o B

Where in our case _8 is the test mass (proof mass), and 9] 0 represents the attracting

bodies, like the capsule (cylinder and caps) and the Earth.

For the purpose of simplicity we will proceed with a representation of the test body,

and a single element of the attracting mass, M i .

The gravitational potential at a representative element mass M i due to the test body

dM B
is: V(M i ) = -GM. f _ where _ is the radius vector between an element massl

M B r

of the test body and dMoas shown in Figure 78.
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Z

Figure 78 Gravitation model for test mass and outer attracting bodies

Assuming a sufficient discretization, the total force acting on the test body due to all
U

_'B _- _,VV(Mi), where N is the number of outer mass elements.outer elements is:mass
i_l

The model utilizes two coordinate systems. The first is the capsule frame, denoted by:

{X,Y,Z}. X, yare so far arbitrary, while Zcoincides with the symmetry axis of the

main cylinder. The test body frame, denoted by{x,y,z}, is attached to the test mass. So

far, the origin and the orientation of the coordinate system are arbitrary. The gravitational

potential will be expressed in body frame. The inertia coefficients of the body are
constants in this frame.

The analytical procedure is to express _ as 7 =/? -/5, and to expand the potential by

,the following power series: r = Rn_=O Pn --_-.

Here P is the Legendre polynomial of degree n.
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The derivationconsistsof the following steps.Substitutingthe inverse radius

approximation into the potential, carrying out the integration, while expressing vectors in

body frame, as follows. /_--- (l_ x + m_y + n_z)R and _-- x_ x + y_y + Z_z, where

{e x eye z } are body unit directions, and 1, m. n are direction cosines between /_ and the

body axes. The resulting potential is a summation over all mass elements Mi:

N GM1M 2 GM1M2[l._+my+n_]v= _{
i = 1 R R 2

GMl[(3122R3 - l)Jx, x +(3m 2 - 1)Jyy +(3n 2 - 1)Jzz + 6(lm Jxy + tnJxz +mn Jyz)]

GM12R4 [1(5l 2 - 3)Jxx x + m(5m 2 - 3) Jyyy + n(5n 2 - 3)Jzz z

+ 3m(512 - 1)Jxxy + 3n(512 - 1) Jxxz + 31( 5m2 - 1) J_,y

+ 3n(5m 2 -1) Jyyz + 31(5n2 -l)Jxz.z + 3m( 5n2 -l)Jyzz

+ 61ran Jxyz] + O(_-'5-5) }

where jxPvqz r are the inertia integrals defined as:

jxpvqz r = f xPyqzr dm
MB

For the second order, it is common to use the moment of inertia. The following
relations relate them to the inertia integrals:

I

Jxa- = _(I_ 7 + 1_=- Ixx)

Jyy = 2(Ixx + Izz - Ix_.)

1

Jx_ = "_(Ixx + lyy -I=)

Jxv = 1_,

J__z= &_=

J --I
'V- 'V-
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Wedefine6 -- {2, y,_} as the offset between the origin of the flame and the center of

mass. It should be emphasized at this point that the origin does not necessarily coincide

with the center of mass. Although the test bodies are typically axisymmetric, and ideally

the geometrical center is the center of mass, mass and/or mounting imperfections can
displace the center of mass from the geometrical center.

Note that if the origin is at the center of mass, the body frame coincides with the

principal axes, and O(1/R 4) is neglected, then the resulting potential is the so-called

MacCullagh formula:

V-- GMIM2 GMI [ - 3IR),
R -_ trI

wherelR --_/R" I'_/R --12Ixx + m2Iyy + n2Izz

inertia tensor I on /_.

is the projection of the second order

The force acting on the body is the gradient of the potential (the negative gradient is

the force acting on Mi).

The resulting total force components, in body flame, are:

N MB 1 7 + 31i n i _]+ MB (31; 2

F x = Gi =_1Mi{-"_Ri Ri 3 [ , - I)2 + 31imi.

+ I 5

R--/T.4[(-_F i - Iyy - Iz: + 2Ixx)I i + 3mi(51i 2 - l)Ixy + 3ni(51i 2 - 1)Ix: + 151imin i Iy:]

+ 1,[1(35//4-30/i2+ 3)J_,.+5(7mi2-3)limiJvw,+5(7ni2-3)liniJ.--
Ri_ 2 " "'" _

+ 15(7//2 - 3)limiJxxy + J_(7/i 2 - 3)I i n i Jxx _ + 3(35li2mi 2 - 51i 2 - 5mi2 + 1) Jx3.?,,

15 (7n 2 _ 1)limiJyzz15 "_ + 3(351i2ni 2 - 51i 2 - 5hi 2 + l)Jxz- "2- i+ -_(7rni" - l)li ni Jyyz . +

+ 3(71i 2 - l)mini Jxyz] + H.03"}

121



N Ml_m. l)y + 3min i 7]F,. = G _ Mi{_+ M_[31.m.2+(3mi 2-
- i=1 Ri Ri._L t z

+ 1 5 _izz+2iyy)m i 31i(5mi2_l)Ixv+151iminilxz 3ni(5mi2_l)lyz]
---_l(-_r i - Ixx + . +

+ .._3_l._(7/il5 2 _ 3)I i m i Jxxx + 2(35mi 4 - 30mi 2 + 3)Jyyy + 5(7ni2 - 3)min i Jzzz
R i

+3(351i2mi2-5mi2-51i2+l)Jxxy+l-_(71i2-1)miniJxxz+l_(7mi2-3)limiJxyy

+ l-_ ( 7m i2 - 3 ) mini Jyyz + l-_ ( 7n i2 -1,1im iJ x_d + 3 ( 35m i2n i2 - 5mi2 - 5n i2 + l ' J yzz

+ 3(7mi 2 - 1)Ii n i Jxyz] + HD.T}

= N Mal M Br +3rain iy+3(n i - )z]F. G _ Mi{_+'-S"_3|31ini.T 2 I -
" i=1 Ri R i" "

1 5 21._) ni + 151iminilxy + 31i(5ni 2 -l)I ¢. + 3mi(5ni 2 -l)lr-]
+ R--74[(_Fi - Ix,-- ly:, + _ ._ .

+ _Ri5 [_(7li5 2 _ 3)liniJxxx+_(7mi5 2 _3)miniJ_:+_(35n il 4 _ 30ni2 + 3)jr=

+15(7/2 l)miniJx.n "+3 (351i2 ni2 51i2 _ 5ni 2 +l)Jxx" +152 (7mi21) li ni Jxw

+3(35mi2ni2-5mi2-5ni2+l)J,.z+l-_(7ni2-1)liniJx=+l_52 (7ni2-3)miniJ._=

+ 3(7ni 2 - l)lim i Jxyzl + HD.T}

where

F i = (Iyy + lzz - 2Ixx)li 2 + (Ixx + Izz - 2Iyy)mi 2 + (Ixx + Iyy

Note that the force has the following order of magnitude:

_./ L 2 3F oc_G_{O(1)+ O( )+O("_2)+o(LB_3)+H.O.T}
i Ri " Ki Ki

Where L B is a typical length of the test body, LB << 1 and _ << 1.
Ri " Ri

2
- 2Izz ) ni
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Gravity Torques

The torque, acting on the test body, can be computed with respect to the center of
mass or with respect to the geometrical center. Both coincide when the body has perfect

symmetries. In reality there are mass imperfections that cause the center of mass to

deviate from the geometrical center. Since we have no a-priori knowledge of the

imperfections, our reference point for computing the torque is the geometrical center.

/
/

Figure 79 A Model for the Torque

There are few approaches for computing the gravity torque. Our approach is to
integrate the torque due to mass element in each body. The torque with respect to an

arbitrary point is, therefore:

where,

- L N dXRd MTC.M =G f f _lx dM BdM o_- G_m i f --
!}_o 3_B r3 i=1 _B r3 B
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N -i
_'B--G f f _-TdMBdMo = G_m i f -'TdM8

_0 _B r- i=l _B r-

There are three approaches to compute the integrals. The choice of the approach

depends on the size of each body. If both _R and _o are small compared with R, than

we can expand r, and obtain an analytical approximation. If only _B is small, as in our

case, we can approximate _B but have to integrate numerically in 9] o . If both are large

relative to r, then the only way is to perform a double numerical integration. In our case,

not only _o is large, it is also surrounded by _B, so there is no topological way to

expand r in _o.

N _[mini (IzzT = 3Gt_lMi{ -1 )+lnIx -= - )T i ix),
i

1
+ _[n (5m 2 - l)J

2R,' i i Y) T

- m (5/2 - 1)J
i i

T

Y

-l m l +(n2-m2)l ]
i i xz i i yz

-m (5n 2-1)J +n (5l 2-1)J
i i zzz i i xx),

-101m nJ +m (10n 2-5m 2 +l)J
xxz i i i xzz i i i yyz

+ 101 (n 2 - m2)j ] + H.O.T}
i i i xyz

-I )-mnI +lmI +(12-m2)I ]
xx zz i i xy i i yz i i xz

-n (10m 2-5n 2 +l)J
i i i yzz

N 1
= 3G _ M {_[ln (I

i=1 i R 3 i i
i

+I (5n 2-1)J -101m n J -n
i i zzz i i i x__, i+ 2R,4 [-hi(51- - 1)J m

-1 (10n 2-512 +l)J +n (1012-5n 2 +l)J
i i i xxz i i i xzz

+ I (5m 2 - 1)J
i i yyz

+ 10m (12 - n 2)J ] + H.O.T}
i i i xyz

+lOlmnJ
i i i xyy

(5m 2 - l)J
i .ryy

+lOlmnJ
i i i yzz
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N 1

T = 3Gt_ Mi{-'_[limi(Iz '--1 YY
i

+ 1-7[m (512 - 1)J

-._R i i i xxx

-I )-(m2-12)I +toni -lnl ]
xx i i xy i i xz i i yz

-l (5m 2-1)J +l (10m 2-5l 2 +l)J

i i yyy i i i xxy

-m (10/2-5m 2 +l)J +10lm n J +m (5n 2 -1)J -10lm n J
i i i xyy i i i xxz i i xzz i i i yyz

-1 (5n 2-1)J +10n (m 2-12)J ]+H.O.T}
i i yzz i i i xyz

The order of magnitude of the torque is:

T_x_,GMiMB{o(LB22) + L 3 ) + H.O.T}
i R i Ri Ri"

If the origin is at the center of mass and the body frame coincidcs with the principal

axes, then the resulting torque is reduced the well-known expression (based on

MacCullagh formula):

N M .

Tx =- 3G (Izz - I,,v) _2_ami ni
-'-' i=lgi-'

Ty --- 3G (Ixx -Izz) _ M---LIi n i
i=lRi 3

Tz - 3G (Iyy -Ixx)i limi

Proposal for frequency decomposition

We would like to propose a more general approach for a closed-form solution of the

force/torque in terms of their frequencies.

Let us expand the force in potential orders as well as a Fourier series in the spin

angle, assuming a pure spin around the axial axis of the test body.

l dmax d + 1 d

*5=G f _'TYTg+2_ {'_o(a) + _ [fi( )c°snq_+b(a)sinncp]}dMo
_o K d=0 n=l
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where d is the degree of the inertia. Let Jxiyjz k = fxiyjzkdMn than d-- i + j + k.

Assuming that we have carried out the integration (analytically or by numerical means),

can be expressed as:

dmax d+l -(d)
/7=G _ {,_d)+ _ [A n cosnfp+_(nd)sinnfp]}

d=O n=l

=(e) 7,(e)

where--nAta) _0-- "_ dM o , and /_n(d) -- 9fo_--_dMo.

These coefficients may be viewed as a generalization of the inertia coefficients of_R o .

If _o is topologically connected (i.e., _n is outside _o), and if _Ro is sufficiently

small, then one may asymptotically expand these integrals. This will result in the inertia

coefficients of 9to . In our case, these coefficients can be computed numerically, or

sometimes analytically, when _o is simple enough.

For a more general rotation, one needs to express the direction cosines in terms of the

general transformation matrix (rather than the single-axis rotation).

Order of Magnitude and Similarity Analysis

The dominant sources of the gravitational attraction are the capsule, the Earth, and to

a lesser degree the Moon. Let us perform a qualitative comparison of each source. First,

we should note that the force acting on the test mass is not a homogeneous function of the

mass and the radius (as a force acting on a point mass). This is because the parameters
R and MB contribute as:

F°cd MB / + 6_-'_3B) + G(R-R_) + G(RM"_sB)'°r-kR2 )

F ocF (°) + F (1) + F (2) + F (3),

where F (°) represents the 2-Body term, and so on (the order enumeration is according to

the corresponding Inertia order). Therefore, it is impossible to express the ratio of forces

from different sources as r ( M1,R1)/ F ( M2,R2 )o_f ( ( MI/ M1 )m ,(RI/ R1)n ).

On the other hand, each order is homogeneous, that is

F(*) (M1,RI)/ F(* ) (M2,R2 ) = (M1/ M2 )(R2/ R1) (*)

Therefore, in order to compare different sources of attraction, we must consider each
order separately.
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Thefollowingqualitativediscussionconcernstheforcedifferencebetweenthetwo
testbodies.Let usdenotef0 as a generic function, then a generic expression for the

force acting on test mass Bj is:

We present two models for the force difference. In the first model the two test bodies

are centered, and the inertia components of the bodies are different. In the second model,

the bodies have equal inertia, but are not centered. These two models are idealization of
the two sources of difference, while the reality is probably a combination of these.

The force difference for the first model is:

AF=FB2 _FBI= f(AM;)_2)+ f(AP;)_R1---T)+ f(A12;)_4)+ f(M3;)_R_5 )

The force difference for the second model is represented by a differential. For central

deviation e, the force differential is:

+ f(P;) + f(12;) + f(13;)

The ratio between force terms of order k from two different sources 1 and 2, is:

k

F_I(M2,R2) M 2

The following table compares the force order of magnitude due to different sources.
Note that we eliminated order 0 (2-Body), since the test body is in free fall.

Table 1 Ratio of force terms for few orders for the dominant gravitational sources

Inertia order Capsule / Earth Capsule / Moon Earth / Moon

1 4"10 -3 8"10 4 2"10 7

2 3"10 4 3"10 t3 1"10 9

3 2" 10 '1 1" 10 22 6" 10 '°

4 1* 10 TM 4 * 10 30 4 * 1012
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It is obvious that the effect of the Moon is negligible. The Earth is dominant only
with respect to the gravity gradient. Again, as the order under consideration becomes
higher, the effect of the capsule increases.

To gain more insight into the nature of gravitational attraction let us examine the
force. It can be rewritten in the following form:

o( ) o(÷)o c,o( )o coo(÷)
Where c represents the direction cosines. The notations c ° and c e show the nature of

the degree of the direction cosines (odd or even). For example, a square of a particular

direction cosine has an even degree, while a product of the three direction cosines has an

odd degree. Now, suppose that the test mass is at the center of the cylinder. Since for
each direction cosine to a mass element there is an opposite direction cosine, all the odd

terms are cancelled out. Therefore, the only non-zero contribution is due to the even
terms.

Another important issue is the role of the test body mass and size. For this purpose we
perform a similarity analysis, as shown in the following.

We formulated the gravitational potential as an asymptotic series in 1/R n . Each term

in the series has an inertial tensor of degree n - 1. For example, the first term is of order

n = 1 and its inertia tensor is of order 0 (the test body mass). The third term is of degree

n = 3 and its inertia tensor is of order 2. This non-uniformity introduces a problem, as
mentioned earlier, when one computes the forces for a particular test mass, and wants to

deduct the forces for a different scale of test mass. Mathematically speaking, if F(MB!)

and F(MB2 ) are the forces due to two different test masses, then the ratio between the

forces is not a homogeneous function, that is, F(M Bi ) / F(M B2 ) _ g((M BI / M B2 )m )

where g is a function and m is the degree of the homogeneity. Note however that each

term of the series is homogeneous by itself. For example, the first term is homogeneous

of degree one, that is, the ratio between forces equals the ratio between the masses.
We will distinguish between two cases. In both, the mass distribution of the different

test masses can be scaled. The first case is when the difference in masses is due to a

different density. Since the forces are homogeneous of degree one in density, the ratio

between the forces is equal to the ratio between the masses. In the second case the density

is the same, and the different mass is due to different sizes. In this case we will apply a
different similarity to each term. Let L and M be scaling factors for the length and the

1/3
mass, respectively. If the density of different test bodies is the same, then L _ M Let

m = n - 1 be the order of the moment of inertia. Its similarity dimension is LmM, or

M l+m/3, or L m+3. The acceleration similarity is M m/3 or L m. The following table

summarizes the similarity dimension for each term in the potential.
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Table 2 Similarity relations for the gravitational potential terms

Potential Order Inertia Order Inertia

n • 1/R n m = n - 1 Similarity

1 o M (L _)

2
M 4/3 (L 4)

3 2 M5/3 (L 5)

4 3 M 2 (L 6)

Acceleration

Similarity

1 (1)

M 1/3 (L)

M 2/3 (L 2 )

M (L 3)

5 4 M7/3 (L 7) M4/3 (Z 4)

To summarize, given the force (or the acceleration) due to a particular test body, we

can deduct the force (acceleration) due to another geometrically scaled test mass. The

acceleration ratio (of two different test masses) versus similarity dimensions (mass and

length) is illustrated in the following plot.
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Figure 80 Scaling of Acceleration of Test Mass

The maximum potential order considered in this analysis is the hexadecapole (n = 5)

which involves the fourth-order inertia integrals. We computed numerically the forces
associated with the hexadecapole for a body with equal second-order inertia integrals (in
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orderto minimizethequadrupoleterm). Theresultsshowthat, at theworstexpected
locationinsidethecapsule,themaximumaccelerationassociatedwith thehexadecapole
termfor a 1-kgproofmassarelessthan10 16 g. In other words, for the accuracy goal of
this experiment there is no need for belted cylinders (which would reduce the

hexadecapole component even further). Proof masses with equal second-order inertia

integrals (or alternatively moments of inertia) and construction accuracy of order ten

microns are sufficient to make the contributions of all the higher-order gravity terms
negligible.

EFFECT OF INERTIA IMPERFECTION ON A SPINNING TEST MASS

Our goal is to minimize the gravitational forces acting on the test mass. The force

equations reveal that the dominant term under our control is the term corresponding to the

second order inertia. The CM offset effect may be bigger to start with but it can be

reduced by centering. The direct way to minimize the forces is to require equal second

moments of inertia. The residual forces then are due to mass imperfection, and to higher
order inertia integrals. The purpose of the following discussion is to explore the effect of
each term for a spinning test body.

First we will evaluate the mixed-inertia terms due to the imperfection.

We assume that the imperfection is due to disturbance in mass and in length. The
nominal test body is a perfect cylinder, with radius Rs and length Ls. In order to minimize

the force we require that lxx = Irr = lzz. This constraint results in a given aspect ratio of

the cylinder as follows: LB = ,¢_-Rn. Given the mass density, the mass or the sizes of the

cylinder are now functions of a single free parameter. For example, given the mass, MB,
1

and the density, P B, the length is: LB = "[3MB \/_

\:rPB /

The similarity dimension of the k-order inertia is: [I] = Mff. Thus, the perturbed k-

ordered inertia is: [61] = Lk 6M + kMLk-16L , or

Next we consider the effect of the spin. The test body is spinning about its x-axis with

a frequency that will be regarded as a fundamental frequency, or PI (period one). We are

primarily concerned with PI which is the period of the measured signal. For that purpose

we will analyze Fy by substituting the direction cosines, shown below, into the force

expression (note that y is the sensitive axis of the accelerometer).
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l =l (t;P1); m =m (t;P1); n =n (t;P1)
i i i i i i

It is important to note that the forces are expressed in body frame. The direction
cosines are Pl-periodic. Moreover, if the body fall such that the body x-axis is parallel to

the capsule X-axis, only m and n are periodic, as will be seen from the following
discussion.

The periodicity in time is introduced through the direction cosines that represent the

orientation of the body frame relative to the capsule frame. The transformation between
the two is:

li]I!°= cO sO Y

-sO e0ltZ ]

The resulting direction cosines are:

x X
l - - ,_ l(0)

R R

y YcO+ZsO
m_--_

R R

z - YsO + ZcO

R R

l is a cyclic function only if the body deviates from the X-axis. If the test body is

perfect, then only the point mass term and the first term of O(1/R4)contribute to Fy.

Otherwise, m, n introduce higher harmonics. If the power of the direction cosines is even

(NE), than the additional harmonics are: P,,,P.,,'",PvE" For odd power (N o) the

additional harmonics are: P,,P3,...,PNo. The dominant time dependency of a perfect

body is introduced through the first order attraction on a point mass. It results in a
fundamental frequency, because the gravitational attraction is static in the capsule frame,

while the measurement is in the rotating body frame.

The expected frequencies are the following. P1 from the point mass termO(l/R 2 ).

PI and P2 from the offset term O(1/R 3). Since F/ contributes P2, the term of O(1/R 4 )

contributes P1 and P2. However, because of the almost axial-symmetricity of the test

body, F/ is almost a constant, so the dominant frequency of O0/R _ ) should be P1. The

term of O(1/R _) contributes P1, P2, P3 and P4, where P2 should be dominant.

The analysis above is for the x-axis parallel to the X-axis, that is, for l -- constant.

Otherwise 1_ l(0) and higher frequencies are involved. The explicit orientation

dependency of period one (PI) becomes:
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F B°dy (0; g ) -- G Y_M R.3 -- R 5Y i--1 ' . Y R 4 Y
l 1 l

where

/_(2) = MB(_, i cos0 + Z. sin0)
y t

_(3) = 3MBf(,(_ i cos0 + 2. sin0)_
y t

F(4'={5[Af(i2_'i+l(3B+C'(Yi3+_"Z2']-BYi}c°sOy, i

_(5) = 5(72i2 _ 3)(_ cos0 + 2 i sinO)2J_,Y

and A", = X/R, I_, = Y/R, Z, = Z/R are the direction cosines in the capsule frame.

An interesting case is the effect of the attraction of a point mass located on the Z-

axis. It may represent the Earth attraction on horizontally falling body, or the caps on the
top or the button of the capsule.

Let the attracting massM, be at Z1 = T-R, in the plane X = Y--0. Using the

relations: Z, = R, sgn(Z_), 2, = sgn(Zl) , 2 2 = 1. and substituting the attracting mass

coordinates results in the following simple equation:

FB°dY (o;PI,I =O)= GMiI M-M-_-B+I I (7B + 5C)lsgn(Zl)sinO

" 8,¢ J

Again, the relations above are the terms corresponding to P1. The other frequencies
may be observed from analytical expansions, or from a numerical frequency analysis, as
demonstrated in the next section.
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Numerical Investigation of an Imperfect Spinning Test Body

The scenario under investigation is shown in Figure 81. The capsule consists of a

hollow cylinder, covered by two flat caps and a total mass of 500 kg. The test body mass

is 1 kg with sizes: R 8--0.0412m and L 8--0.0713m. The geometrical and mass

inhomogeneity errors are: 8L/L = 10 4 and 8M/M = 10s. Consequently, the offset

components are: _ -- 1.7 x 10-6m, _ _ 2 x 10-6m, _ -- 1.7 x 10-6m. The components of the

inertial matrix are: Ixx -- 8.5 x 10 -4 kg-m 2, lrr -- 8.501 x 10 -4 kg-m 2, Izz = 8.5015 x 10 -4

kg-m 2. Note that the nominal values of those are the same. The mass perturbations

prevent the elimination of the following inequalities: Ixx+lyy-21zz_O,

Ixx + 171, - 21r,r, _ O, lry + Izz - 21xx _ O.

lxy -- 3 x 10-8 kg-m 2, lxz -- 3 x 10-8 kg-m 2, lrz -- 4 x 10 -8 kg-m 2. The components

of the third-order inertia tensor are: lxx x -- 5 x 10-1°, lrrq¢ -- 8 x 10-1°, Izz z -- 8 x 10-l°,

lxx r--6xlO -l°, lxx z=6xlO -l°, Ixr v=7xl0-1°,Irrz--8xl0 -l°, lxz z--6xlO -l°,

lrz z = 8 x 10-l° , lxr z = 7 x 10-l° (all in kg-m3).

X 11

A 'Z

2.3 [m]

,I P

1.2 [m]

Figure 81 Coordinate systems for the test body and the capsule (dimensions account for

the thickness of the capsule walls)
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Thegravitationalforceandthetorqueactingon the test mass were computed at 9

points inside the capsule. Three points along the axial axis, three points along an axis

deviated by 0.1 m from the axial axis, and three points along an axis deviated by 0.2 m

from the axial axis. The ninth point is the farthest away, thus representing the worst case.

0.5

-0.5

-1

i t i i i i i i i i i

P1 P4 P70 i ,

-o18-o16-oi, -o12 o12 oi, o16 o18

Figure 82 Tested Points inside the Capsule

We are mostly interested in F r ( F r is in phase with F z ) and in T x . Because of the

free fall, we exclude the 2-Body terms. The following plots show the angular history of

the force/torque for a single revolution with respect to the x-axis, and the corresponding

spectra. The latter are normalized, such that the highest amplitude is equal to one. The
results are given in the following 18 plots. The analysis of the frequency spectrum

requires a closed look at the equations for the force and torque, considering the particular
location of the test mass relative to the capsule. Some of the results are non intuitive. The

general approach to estimate the results is to specify each term according to the degree of
the direction cosines (odd or even), and consider possible cancellations due to anti-

symmetricity with respect to the radius vector between the test mass and each capsule
element. The results are shown in the following figures.
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Thefrequencyspectrumfor theforceandthetorqueareshownin thefollowing
tables.Thedominantfrequenciesareinboldface.

F
Y

r

Table 3 Frequency spectrum along the capsule axis

First Order Second Order Third Order

PO, P2

P2

PO, P1, P2, P3 P2, P4

P2 P2, P3, P4

Table 4 Frequency spectrum to the side of the capsule axis

F
3'

rx

First Order Second Order Third Order

P0, P2 P0, P 1, P2, P3 P 1, P2, P3, P4

P2 P2 P1, P2, P3

Table 5 Frequency spectrum close to the cap

Fr

First Order Second Order Third O_er

PI,P2 PI,P2, P3 PI,P2, P3,P4

P1, P2 P2 P1,P2, P3

The orders in the above tables are the following. Order 1- offset or inertia order 1,

O(I/R 3) for the force. Order 2- inertia order 2, degenerates to MacCullagh formula for a

perfect body (or with respect to the principal axes), O(I/R 4) for the force. Order3-

inertia order 3, O(1/R 5) for the force.

It is important to emphasize that the relative orders depend on the mass imperfection.

For example, we should not rush to a conclusion regarding the contribution of the offset.
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Thedominantcontributionfor aperfectlysymmetricalbodyis fromthesecondorder.In
this casethetorqueis in agreementwith the MacCullaghformula.The spectrum
associatedwiththesecondordercanbeobtainedby noticingthatthedirectioncosines,m
andn,haveperiodone:m ----P1, n ----,P1 . Therefore,

Tx ,, (Izz - Iyy)mn --->P2 , Ty ,_ (Ixx- Izz)n ---, P1 , Tz ,_ (Iyy - Ixx)m--, P1.

Note that Iyy -_Izz, thus both the offset term and MacCullagh term are amplified by

the offset. Tx is null for a perfectly symmetrical body. Ty and Tz show various

frequencies. However, Ty and Tz acting on a perfectly symmetrical body contribute PI

according to MacCullagh formula. Also note that order 4 may play a role as well, because

we assumed equal principal inertia of order 2. This assumption nulls the perfect body
contribution of the second order but it does not cancel completely the term of order 4.

The frequency P1 is dominant only at the extreme location (point 9 inside the
capsule), due to the offset. We investigated the vicinity of this point, and found that the

amplitude of P1 decreases as we move farther from the cap.

Concluding Remarks

We presented an analytical and a numerical analysis of the gravitational perturbations

acting on the test mass due to the capsule. The outcome of this work is a closed-form

formulation for the force/torque as well as a flexible and interactive computer code.

Our analysis predicts that the gravitational perturbations, acting on the test mass due
to the capsule attraction, are safely within the limit required by the experiment if
construction criteria, outlined below, are followed.. Moreover, along most of the test

mass trajectory, the perturbations are far smaller than the limit, and their frequencies are

different from the modulation frequency.

The conclusions from our investigations concerning the construction of the test

masses are:

- The test masses should be smaller than about 10 cm and lighter than about 2 kg.

- The second-order principal moments of inertia should be all equal within
construction tolerances, i.e., ibL/L < 104.

- There is no need for belted cylinders (as used in the STEP satellite experiment)

for the accuracy target of our experiment.

- The mass distribution of the test masses should be as uniform as possible within
8M/M < 104.

The investigation carried out is essential for the definition of the tolerable sizes,
masses, inertia characteristics, and construction accuracy of the sensing masses.
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RELEASF_JLEVELING MECHANISM DEVELOPMENT

Introductory remarks

The leveling and release mechanism must be able to release the detector with initial

conditions that do not impair the accuracy of the science measurement. Once the effects

of the higher-order mass moments on the proof masses are made negligible through the

right shapes and sizes, the most important external perturbation is the Earth's gravity
gradient. Other perturbations are of course present but they can be made negligible

through suitable thermal design, reducing the pressure inside the detector, and shielding
the detector from magnetic disturbances.

The noise components associated with the Earth's gravity gradient manifest
themselves at twice the spin frequency and (depending on the orientation of the spin axis)

at the spin frequency. The latter are the damaging components. The gravity component

of importance to us is the gxy where x is the spin axis and y the sensitive axis of the

accelerometer. As shown previously, this component is proportional to the product

sin(_)_x where _ is the elevation angle of the body symmetry axis with respect to the

horizontal plane (defined by the local gravity) and _x is the centering error along the spin

axis between the CMs of the proof masses. The formulas derived previously for the
Earth's gravity gradient components will be utilized at the end of this section to set a

limit on the tolerable tilt angle at release.

Additional harmonic components come from the rotational dynamics of the
instrument package. These harmonics are related to the inertia characteristics of the

package and the rotational velocity errors at release. In summary, the leveling and
release mechanisms must provide an orientation of the spin axis close to horizontal (to

reduce the Earth's gravity gradient component) and rotational velocity errors sufficiently
low to avoid saturation of the accelerometer output.

The detector has also its own elastic dynamics (as shown in a previous section) which
is excited by the conditions at release. We can conservatively assume that the release

will excite the elastic dynamics of the detector up to its end of scale. The experiment
strategy is to damp the elastic oscillations through electrical dissipative forces (see later
on for experimental results) exercised for a few seconds after release. Once the elastic

(natural) oscillations are abated to a level well within the dynamic range of the

instrument, the electrical dissipative forces are removed and the detector operates as a

high-Q detector. After the natural oscillations are abated, the oscillations of the proof

masses will be forced by the rotational dynamics of the detector during the fall.

In order to understand the effects of initial errors at release upon the differential
accelerometer output, we need to develop a simplified model of the accelerometer. This

model must contain the key dynamical elements but must also have a sufficiently simple
formulation that shows analytically the origin and frequency content of the proof masses
acceleration.
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Simplified dynamical model

The differential accelerometer consists of proof masses that are about twenty times

lighter than the mass of the instrument package. Moreover, the proof masses are

expected to move with respect to the CM of the whole package by only microns during

the early transient phase and by nanometers during the measurement phase of the fall.

Consequently, the rotational dynamics of the package is unaffected (and this will be
confirmed in follow-up analyses) by the tiny motions of the proof masses. On the

contrary, the rotational dynamics of the package drives the motion of the proof masses.

In summary and with a good degree of approximation, the rotational dynamics of the

package can be assumed to be steady. The solution of the attitude motion of the rigid

body is available in close form for a free spinning body. Consequently, we need to write

the equation of a proof mass that is mechanically constrained to the rotating (and
wobbling) instrument package in order to understand the origin and frequency content of

the acceleration output of a single proof mass. The analysis can be extended to two proof
masses.

The general expression for the acceleration of a test mass at point P with respect to O

in a rotating system F can be written in matrix form as:

,fit,[i},{it[to + [to][_o + 2[_o + = {ap - a 0 }

L ,J

(60)

where [09] is the angular rate matrix of the reference system and {x y z}T the position of

the point P with respect to the center of the reference system O (placed at the instrument

package CM).

For a rigid body the equations are projected onto the axes attached to F itself (body

axes) where the position vector is assumed fixed with respect to the center of F.

Consequently, eqn. (60) transforms into:

[_o] B- + [to]B [o_] B : {ap - a 0 (61)

Where the angular rate matrix projected onto the body axes can be computed from the
rotation matrix that relates the body axes to an inertial system:
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0 -to z t0_, 1
[,o]8--RI8 8/-- ,Oz 0 - x

-tOy tOx

(62)

After substituting eqn. (62) into (61), we derive the well-known acceleration matrixes

that provide the acceleration gradient at the point P with respect to O as observed by the
rotating observer (or equivalently a proof mass of the detector):

tOy + O)z2 -tOxOOy -OOxO)z

[C] = ] -WxWy Wz 2 + _x 2 -OOyWz

[ -O)x°Oz -O)yO) z Wx 2 + Wy 2j

centrifugal acceleration matrix

[E] = I0
--(.03,

--tO. 0 _.

tO; --(Ox

Euler acceleration matrix

Consequently, the (apparent) acceleration gradient tensor (in body axes) between a
point P and the package CM at O is:

[A] = [C] + [E] (63)

In order to compute the expression of tox, tOy,tOzwe need to consider the dynamics of
the instrument package that houses the detector. In other words, we must solve the Euler

equations for the torque-free case of a rigid body. We will consider an inertially
axisymmetric body and regard x as the longitudinal axis of inertial symmetry. The non-

symmetric body also has a known solution but it is more complicated as it involves
elliptic integrals.

After setting v = component of the angular rate along the axis of symmetry, the well-

known solution of the Euler equations is obtained as follows:

= -wt cos(fit)

= to t sin(f_t)

(64)

in which the origin of t is at the time when tOyattains its maximum value and where:

Q= It-l. x v
1,

body precession rate
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+ _- + 2 transverse angular velocity

The quantities toy0 and C%o are the initial components of the angular velocity

orthogonal to the symmetry axis. In our case, they can be interpreted as the rotational
velocity errors at release of the instrument package.

After substituting eqn. (64) into the matrices [C] and [E], we obtain the component of

the overall acceleration gradient matrix:

axx =-_o_

a n, = ayx = -w t cos(ff_t)(ff2 - v)

axz -- azx = -_o t sin(_t)(ff2 - v)

ayy = lm_[l-cos(2Qt)] + v 2

ay: = a:y = - _'o) 2 sin(2f2t)

a::" = l_ot2[l + cos(2ff2t)] + v 2

The acceleration vector a measured at P and projected onto the body axes, is simply:

{a} =[A]{d} (65)

where {i5} = [fix, 6y, _z] T is the position vector from O to P (we have changed the notation
to the iSs to highlight the fact that we are dealing with very small distances). The

component of the acceleration along the sensitive axis (ie, z-axis in this formulation) of
the accelerometer is as follows:

a: =-wt(v-f2)cos(f2,)6 x +lw2sin(2ff2t)6y+[v2+lw2(l+cos(2f2t))]6z (66)

This acceleration is the dominant acceleration experienced by the proof mass once the
natural oscillations have been abated. In fact the amplitude of the residual natural

oscillations can be made orders of magnitude smaller than the magnitude of the 6 vector

through initial damping. Equation (66) highlights several important points as follows: (1)

the rotational velocity errors at release (encapsulated into t0,) combine with the

displacement error _ to produce an acceleration output along the sensitive axis; and (2)

this acceleration component is modulated by the body precession rate and not by the spin
frequency. This fact was observed previously in the results of the general elastic model

of the detector. The conclusion is very important because it implies that the errors at
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releasedonot impactdirectlya possibleEP signalviolation(thatappearsat thespin
frequency).Theoveralladvantageof thegyroscopicbody(with non-sphericalinertia
ellipsoid) is that the precessionrate is different from the spinrate. Moreover,the
precessionratecanbechosenatwill byselectingtheratioof themomentof inertiaof the
instrumentpackagein orderto maximizethe ability of extractingthesignalfrom the
dynamics-relatednoise. Sinceboth topand 2 od appearin the expressionof the
acceleration,it is advisableto maketopnoncommensuratewith v (thespinrate).The
selectionof themomentsof inertiaratio(andhencetOp)andtheability toextracta signal
witha strengthatthethresholdsensitivityof thedetectorwill becarriedout innextyear
analysis.

Derivation of requirements

The first requirement derives directly from the analysis carried out previously and it is

related to the strength of the components of the Earth's gravity gradient at the spin

frequency. The resulting acceleration component [from eqn. (43)] is

(_E/_ <
3 _33 cos( q0 sin( $)sin(vt )rx+ 3 _ cos 2(¢)[sin_ev,)_,. + cos(2v,)6. ]2R- " " "

+-.".[3cos   0_l]
R" [2 J

(67)

for an instrument package spinning about x, a sensitive axis along z, and q the elevation

angle of the symmetry axis with respect to the horizontal plane defined by the local

(gravity) vertical. Equation (67) highlights the three components produced by the Earth's

field at the spin frequency, at twice the spin frequency, and a dc term. The strength of the

gravity gradient component at the spin frequency must be substantially less (say l0 '5 g)

than the signal at threshold. A product d#i_ of 0.1 deg-micron will safely meet the

previous condition. Consequently, we can either be more relaxed on the leveling/release

mechanism (i.e., q_< 1 deg and 6x < 0.1 micron) or on the centering between the two

proof masses along the spin axis (i.e., dp< 0.1 deg and 8x < 1 micron). Both options will

be kept open for the time being because they involve several technical considerations

related to the mechanization of the leveling/release mechanism and the calibration of the

differential accelerometer. A choice between the two options will be searched for after a

dynamic analysis of the release mechanism and laboratory tests on the differential

accelerometer prototype to assess the difficulties involved with the accurate centering of
the proof masses along the spin axis.

The requirement on the rotational velocity errors at release can be readily obtained from

the following considerations. First, the rotational velocity error must be sufficiently
small not to saturate the instrument output. In this case we do not have to worry about

the instrument sensitivity because with appropriate inertia characteristics there will be no

components at the spin frequency related to the precession dynamics of the instrument

package. In this case the stronger component is associated with the first term of eqn. (66).
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A rotationalvelocityof 1deg/swill onlyproducea signalof order10 9 g which is well

within the dynamic range for the expected values of spin and precession frequencies.

However, we must also worry about the amplitude of the precession (i.e., the nutation

angle) because through coning of the body axis the accelerometer will sense the Earth's

gravity gradient. The frequency sensed through coning is not exactly the spin frequency
because the coning adds a frequency modulation at the precession frequency.
Nevertheless, we will assume conservatively that the amplitude of the nutation angle

must be less than previously indicated for the gravity gradient related noise. For an

axisymmetric body the amplitude of the body-axis coning (i.e., the nutation angle) is as
follows:

tan(0)-- I, _o, (68)
l,,v

where o_t is the transverse angular velocity at release, Ia and I, are the moments of inertia
about the transverse and the symmetry axis (x-axis in our case), respectively. If we

assume an upper bound for the nutation angle of 1 deg, a spin frequency of 0.5 Hz and a
(worst-case) inertia ratio It/I,, = 3, we obtain tot < 1 deg/s. Likewise, if we had assumed a

maximum 0 < 0.1 deg then we would have obtained tot < 0.1 deg/s. In summary, we will

establish the following two sets of requirements

a) fix < 1/Am (centering error between proof masses CMs along the spin axis)

dp< 0.1 deg (horizontality of detector)

o)t < 0.1 deg/s (angular rate error at release)

b) iSx< 0.1/_m (centering error between proof masses CMs along the spin axis)

d_< 1 deg (horizontality of detector)

to t < 0.1 deg/s (angular rate error at release)

We will start by base lining the release and leveling mechanism according to option a

while keeping option b open if the tight centering of the proof masses of the detector
turns out to be feasible.
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THERMAL ANALYSIS/ISSUES

Following the procedure of the STEP project, we have estimated the pressure

requirement inside the detector for keeping the radiometer effect and the damping due to
residual gas to tolerable levels.

Radiometer effect

The tolerable pressure inside the detector is related to the maximum allowable

thermal gradient through the radiometer effect, i.e., the acceleration produced by gas

molecules emitted from regions with different temperatures _xxi_. This effect is likely to

produce an acceleration error modulated at the signal frequency because, as the detector
rotates, it could see (static) regions with slightly different temperatures. The acceleration

produced by the radiometer effect is a = p (AT/AL)/(2pT) where p is the pressure, T the

temperature and p the density of the sensing mass. For p = 2800 kg/m 3 (Aluminum) and

an acceleration error of 10-15 g, we could have for example: p = 10-9 Pa and a

temperature gradient of 0.3 K/m, or a higher pressure and proportionally lower

temperature gradient. As a result, we can place a requirement on the product of the two

as follows p*(AT/AL) < 3x10 -I° Pa-K/m. In other words, the requirement on the pressure

can be traded for the requirement on the temperature gradient. Early estimates of

temperature gradient across the detector diameter are very small and, consequently, a
higher detector pressure can be tolerated in a detector that is well thermally shielded.

A thermal gradient across the detector also affects the resonant frequencies of the

sensing masses through variations of: the Young's modulus of the material, the geometry

of the torsional springs, and the moments of inertia of the sensing masses. Consequently,
a thermal gradient changes differentially the resonance frequencies of the sensing masses

and ultimately affects the common mode rejection factor.

The common-mode rejection factor is related to the temperature variation AT across

the detector as follows CMRF *_let + CtEIAT where ct is the thermal expansion coefficient

and ct E the thermal coefficient of the Young's modulus. For Aluminum at low

temperatures a << CtE, _E _ -3-5x10-4 K-_ x_xivwhile CMRF is required to be < 10-4.

Consequently, the tolerable temperature gradient for suspensions of the proof masses that

are separated by many centimeters is of order 1 K/m. This value is less stringent than the

tolerable value of the thermal gradient dictated by the radiometer effect and,
consequently, is superseded by the previous effect.

Thermal configuration of instrument package

There are 3 elements that operate at different internal temperatures in the instrument

package, namely, the detector, the preamplifier and the electronic box. The detector

should be at the lowest possible temperature with an upper limit of 10 K. The Gallium

Arsenide FET preamplifier can operate from low temperature (> 10 K) up to room

temperature with slightly reduced performance at high temperature. The electronic box
must be kept close to room temperature. The three boxes also dissipate different amounts
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of power. Thepowerdissipatedby the detectorW_is in the nW rangewhich is
negligible.Thepowerdissipatedby thepreamplifierandtheelectronicboxaretypically
W2_ 100mWandW3_ 500mW whicharebothnonnegligible. A simplifiedthermal
schemeof thethreeelementsis showninFigure101.

Mass 1

Thermal shields

Mass 2

Preamplifier

Electronics

box

,t

Figure 101 Simplified thermal scheme

Thermal issues and design

Thermal issues are not solved by simply meeting the thermal gradient requirement

and lowering the pressure. The experiment has two cold parts, that is, the proof masses

plus casing (i.e., the sensor) and the preamplifier and a component at almost room

temperature (inside its case), that is, the electronics box which includes battery and

various housekeeping functions.

The sensor has negligible thermal dissipation while the preamplifier and electronic

boxes have non-negligible thermal dissipations. We need to evaluate the following: (1)

cooling down time for the sensor and preamplifier before launching the balloon; (2) the
tolerable temperature drifts of the detector, the preamplifier and the electronics during the

measurement phase after release; and (3) the tolerable temperature drifts of the same

units before release during the check out phase.

Experimental data was provided by our partners at IFSI on the power consumption of

the units involved and their sensitivity to temperature variations. Not surprisingly, the

sensor and the preamplifier have the highest temperature sensitivity (expressed as change
of acceleration output per degree K), of order 10 .8 g/K and 10 -9 g/K, respectively,

followed by the electronics which is a few orders of magnitude less sensitive. If the two

sensitivities quoted above are taken at face value, the temperature variation over the

measurement time should be less than 0.1 _tK! In reality, the sensor and preamplifier will
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be grounded to the cryostat temperature before release and then they will rely on their

own thermal inertia during the 25-30 s measurement phase. The temperature drift is

slow, with a time constant that is typically two orders of magnitude bigger than the

measurement time. Since variations of less than _tK are unrealistic to obtain, the question

can be put as follows: how well an acceleration signal at the expected sensitivity can be

extracted from a slow varying background (dependent on the temperature drifts) which
increases by several orders of magnitude over the measurement time?

Answering this question is important to define more realistic requirements for the

thermal design, in general, and for solving point 2 outlined above, in particular. In order

to answer this question we have investigated techniques of signal extraction from a noisy

signal which also drifts by a very large amount due to temperature variations.

This exercise is not meant to be a comprehensive work on the techniques that will be
adopted for extracting the signal from noise but rather it is limited to the issue described

previously. In summary, we have taken a sample 0.5-Hz signal with a strength of 2x10 _5

g (at 95% confidence level), added to a random noise with _--rxl0 -15 g rms and to a

double-exponential (other functions have also been tested) drifting acceleration that

ramps up to an acceleration intensity many orders of magnitude bigger than the signal.

The double exponential (or similar function) represents the different heating rates of the
sensor and the preamplifier with two different time constants TC_ and TC, where we have

assumed TC_ > TC2 to account for the sensor's bigger thermal inertia We have practiced

a basic technique to extract the signal, without assuming any knowledge of the functional

expression of the thermal drift, for increasing steepness of the thermal ramp (that is the
rates of change of the two temperatures).

Figure 102 shows a conservative situation in which the thermal-induced acceleration

ramps up to 2x10 8 g, that is, its maximum value is 7-orders of magnitude bigger than the

expected signal. The signal was extracted with reasonable ease by detrending the signal
+ noise with a 6-order polynomial and computing the FFF of the detrended signal. This

extraction process would not succeed for much stronger thermal drifts, although no
additional effort was devoted to improving the process because the results obtained were

already satisfactory. After considering these results, we can establish thermal drift

requirements for the relevant units as follows:

Sensor temperature drift: < 0.0067 K/s (i.e., --,0.2 K in 30 s)

Preamplifier temperature drift: < 0.017 K/s (i.e., -0.5 K in 30 s)
(69)

For the temperature of the electronic box we can safely assume that it is sufficient to

keep the temperature variation below a few degrees over a 30 s maximum free-fall time.
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Figure 102 Example of extraction of signal from random noise plus a strongly-dominant

slow-drifting acceleration noise (Temp- 1 = sensor and Temp-2 = preamplifier).

Preliminary Thermal Results

A preliminary thermal analysis was carried out by using a finite-difference thermal

analysis code to address the two more critical thermal issues, that is: (a) the cooling down

of the detector and (b) the temperature rise of the preamplifier during the measurement

phase.
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Results of the cooling down are shown in Figure 103 under different assumptions of

radiation and conduction through a cold strap with a conductance of 0.02 W/K

connecting the case of the detector to the cryostat. The most relevant results are those

shown in Fig. 103(a) while Figs. 103(b) and 103(c) represent cases that were run to

assess the relative contributions of radiation and conduction, respectively. As shown by

Fig. 103(a) the cooling time needed, with the cold strap, to reduce the temperature below
10 K is shorter than a week.
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Figure 103 Temperatures of detector during cool down under various assumptions

The second critical issue that we addressed is the temperature rise of the preamplifier

during free fall (i.e., the measurement phase). The preamplifier was singled out as more

critical, from the thermal point of view, than the detector because it has high power and

low mass while the detector has negligible power dissipation and higher mass. We

assumed that the preamplifier is at its desired temperature value (ie, 10-20 K) before the

instrument package release and that a thermal shield is interposed between the

preamplifier box, which is attached to a thermal radiator, and the detector.

24-

22

20
v

= 18

16

E
14

12

10

......................................................i.............. i...............i .......i..................==..... i.... '_

"iiiiiiiii!iiiiiiiiiiiiil/iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilliiiiiiii!iiiiiiiiil/iiii!iiiiiiiiiiiiiiilliiiiiiii!iiiiiiii!iiiiiiii!iiiiiiii

....... i .... _ .... : .... ! ..... :......... i ..... _...... _ .... _ ..... _....... i ........ !.... ! ........ ? ..... ..... i

....------Thermal shield '-;_........i........::........i-..................!........:_.........i...... i.......:_

...._- Preamp. radiator! ......i ........i.......!........!..................i ........! ..... i.......!
(lmmx2Ocm) .....!........i .......!.......i ........_........i ........i ........i.......i.......i

.......i.....! ....!i.....!...............!........i .......i....i i........i.................i.......!.....i......i
i i i ' i ' i ' I ' I ' ' I ' I

0 4 8 I 2 16 20 24 28 32

Time (s) (a)

157



24-

22

v 20

18

16

t--

12- .....

....... !.......!...... i........i......!..... !.........i......! ..... _......._........
10- i i ' I ' I ' ' I

0 4 8 12 16 20

Time (s)

.............................................................!.....................................i.......!................i........:

....... i........ ! ............. s....... !............. ......... !.... _ ........ _..... i..... ! ...................

....- .... _Therrnal Sl_ieid iiii!iiiiiiiiiiiiiii!iiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.......i!........i

Preamp. radiator---i................................................i...............!......
...... (1 cmx20cm) .... ................ _ ........ _ ......................... _ .................. _ ........

24 28 32

(b)

Figure 104 Temperature of preamplifier and thermal shield during free-fall phase

Figure 104 shows the results for different thicknesses of the thermal radiator.

Clearly, in order to keep the temperature variation below 0.5 K during a 30-s time, a l-

cm (thick) x 20-cm (dia.) radiator is required. Additional thermal analyses will be
performed to compute temperature variations of the three connected boxes and,

consequently, define in more detail the thermal design beyond this preliminary analysis
of critical issues.
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MECHANICAL REPORT

Release sequence

The release of the package takes place in 2 stages. Initially the capsule is released from

the balloon. Then, very soon after, the sensor package is released, in two steps, within the
vacuum chamber.

Capsule Release
The combination of wind shear during ascent, the extremely low air resistance at float,

and the limited time at float make it necessary to assume that the balloon will be rocking

at the time of package release. Since it is required that capsule is vertical and non-rotating

before release, the release strategy must account for this. The present concept, developed

thus far, is to actively separate the orientation dynamics of the capsule from the behavior
of the balloon. That is, we have placed a 3-axis gimbals between the capsule release

mechanism and the portion of the gondola that stays with the balloon (capsule

leveling/release mechanism).
As the balloon rockets back and forth, and rotates, the gimbals will be driven to ensure

that the capsule angular orientation is unchanged. The sole effect being that the capsule

will be translating back and forth, and moving up and down slightly. During this process
the linear motion will be tracked from the ground. In order to ensure that we release the

capsule when it is as close to unaccelerated as possible, we will release it at one of the

extremes of the balloon pendular swing.
Since the sensor release does not have any orientation adjustment capability, the capsule

release mechanism must be designed to meet all the alignment and stability requirements
that cover the release of both the capsule and the sensor.

Sensor Release

The sensor release concept involves a two stage support (sensor release mechanism). The

first stage is a simple spit that holds the sensor package through release of the capsule

from the balloon. Once the capsule is in free-fall the sensor release mechanism pulls back

far enough to disengage the spit, and draw it to a position that the sensor will not hit it on

the way down. At this point the sensor is held between 6 springs, 3 on each side. These

springs will be sized so that they can not impart more force than is allowed by the
rotation stability requirements. Any transient sensor motion induced in the spit-support

release will be allowed to damp out in the 6 spring. Once the instrument package is

spinning at a stable rate, and oscillation from the initial stage of the release have damped,

the mechanism second stage will pull back further, and the instrument will drop. The

next stage of the work on this design will be to create a detailed simulation of the entire

system, in order to examine its behavior in detail.
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Figure 109 Detail of release mechanism with spindle disengaged and springs still
engaged

Mechanical/Thermal Design

One of the key advances this year was in the area of the thermal design and increased

detail in the thermal model. In order to assist in this area the main supporting structure for

the sensor package had to be sized. Though most of the instrument design remains at the

concept level, it became important to examine the design forces that controlled this
component's dimensions. The sizing involved balancing the need to minimize the heat

transfer, and therefore the support's cross sectional area, while at the same time minimize

the support deflection, or therefore the support's structure moment. Studies of viable

cryogenic materials suggested that a Kevlar composite would be the best material to use.

Since we intent to use a composite material, and by the nature of the design, one with a
thin wall, a further constraint on the design was a limitation on the allowable

compression load. Coupling these requirements we were able to size the main shaft in

such a way that is can support the instrument without allowing out-of-spec instrument

deflection, while dropping thermal conductivity well below the allowable level.

Below are the present support parameters:

o Length =0.12m
o Diameter = 0.05m

o Wall thickness =0.0012m

o Kt/m = 1.9x 10.5 W'm/K, at 10°K
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Cool down Techniques

Though this will be covered in more detail in the thermal section, the preferred method

for lowering the instrument to cryogenic temperature has been re-examined and changed.

Initially we had examined using radiation alone to reduce the instrument operation

temperature to below 10 K. It was quickly clear that this approach was inadequate. Next
we examined having a cold strap in place prior to launching the balloon. We would then

rely on just radiation from the cold Dewar walls to maintain the temperature. Though this
is effective, it introduces issues related to manipulating the cold strap.

To avoid this we have since base lined a third approach, one involving cooling the

instrument down by flowing cooled gaseous helium (Ghe) through the vacuum chamber
until the instrument is cool. We would then pumping out the remaining GHe from the

inside of the Dewar. This give us a fast way to cool the instrument without having to

manipulate a cold strap.

Dewar Operation Techniques

One of the larger instrument dynamics stability issues that needs to be addressed is the

effects of the liquid cryogens during free fall:

o thc fact that they may slush during the fall

o the fact that they will continue to boil during the fall
o the fact that they needs to be vented, which will cause a propulsion effect.

In order to avoid these effects we are beginning to examine novel Dewar operation

techniques. The standard approach for maintaining temperatures at this level is a Dewar

with a vacuum shroud and 2 cryogen shrouds, LN2 and LHe. But the LN2 is heavy. It can

slush, it tends to boil similarly to water, and when it is vented it produces some

propulsion, all of which will cause some dynamic reaction in the Dewar that could
disrupt the experiment. The LHe, on the other hand is quite light and is far less likely to

cause a dynamic disturbance.

For these reasons we have decided to examine operating the Dewar, at least through the

experiment phase, without LN2. The first approach that we examined was allowing the

LN2 to completely vent prior to dropping the experiment package from the balloon. This

is an acceptable approach, though it does produce some limitation on system timing. We
would rather be able to begin the experiment when the system is settled, rather than

waiting longer for the LN2 to boil off. Instead we are going to examine the possibility of

allowing the LN2 boil off on the ground, and then flowing the boiled off LHe into LN2
shroud.

Dewar Layout

We have moved the Dewar opening from the top of the chamber to the bottom. The

initial Dewar design had the opening for inserting the instrument package into the top of
the Dewar. This meant that all the feedthroughs into the system, as well as all the service

feedthroughs for the Dewar itself were broken anytime the Dewar was opened. In

addition, the load path from the balloon to most of the instrument mass goes through this

connection. By moving the opening to the bottom, all the feedthroughs remain intact

when loading the system, and only the instrument crash protection is supported through

the Dewar cover (bottom plate).
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THERMALANALYSIS

The simplified model discussed previously has been further developed, particularly in the
area of isolation of the sensor from the (relatively) warmer preamp and electronics

module. In fact, the electronics has to be kept above a minimum temperature (for this

model, we have assumed -65C) to prevent damage to the components, and possibly

needs to be warmed further to a "cold-start" temperature at the initiation of experiment
calibration.

The design consists of a sensor supported by a Kevlar-reinforced shaft (discussed

previously) that is suspended by the rotation fittings across the dewar diameter. We have
assumed the electronics module and preamp are balanced disks supported by this same

shaft, both to one side of the centrally located sensor module. Between these various

elements we have places radiation shields to minimize views of the warmer elements to

the sensor. The model representation is shown in Figure 111. The electronics are shown
in red as a result of their maintained temperature; the preamp is just visible between the

two largest disks.

No_e

iiiiiiiii_i_i!i!i!i!iiiii_i

TemDero±ure [K], Time = 0 sec

Figure 111 Thermal model representation
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We haveassumedthat during the entire process (including cool down of the experiment)

that the electronics is maintained above -65C, as illustrated by the red disk at the left end
of the figure.

There are two fundamental conductive paths between the various elements in the model:

the supporting shaft and the wires connecting the electronic elements. The hollow shaft

has been sized to support the masses with sufficient stiffness to allow the experiment to
be balanced. The wires (currently assumed to be 4 pairs between each module) have

been sized to provide less than 1-ohm resistance per circuit. Pure-metal wire like copper

or silver have sharply peaked thermal conductivity in this temperature regime (10-25K)

as well as rapidly changing electrical conductivity, so we have assumed for this analysis
that the wires are Constantan, which has very little change in electrical characteristics

from room temperature down to 4K, but its thermal conductivity drops by a factor of 100,
providing effective thermal isolation at the experiment temperature. The conductors in

the model have been sized to accurately represent the shaft and wires, and all the

important materials are modeled with temperature-varying conductivity and specific heat.

It has been shown in earlier studies that the experiment cannot be cooled effectively by
radiative exchange with the dewar alone - it requires the addition of a thermal strap to
achieve the desired starting temperature in a reasonable period of time. However, a

mechanical strap (or straps) adds several complications to the design. The largest mass is

the sensor itself, yet this is the least desirable location to affix a strap. We are currently
considering an alternative approach: to flow gaseous helium over the experiment to cool

it. This has the advantage that after starting conditions are achieved; the helium can be
pumped out, allowing us to take advantage of the effective isolation of the mechanical
hardware.

We have run a study of the warm-up of the preamp and experiment with nominal power
inputs and the previously mentioned initial condition of the electronics module at 208K

(-65C). Using an assumed cooling of the preamp based on area ratio to the sensor and

heat flow through the wires, the equilibrium temperature of the preamp prior to startup is

approximately 20K. Using these initial conditions, and wires and support tube modeled

as described above, the temperature rise of the preamp and the temperatures and
estimated gradients in the sensor are shown in Figures 112 and 113.
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This studyhasyieldedseveralsignificantconclusionsfor thedesign of the experiment:

• Properly sized alloy wires provide sufficient electrical conductance without

significant impact on the thermal performance

• The most significant thermal conductance is the shaft supporting the sensor and
other modules.

• Radiative heating of the sensor can be well controlled with concentric disks

between modules. These disks, if of significant thickness, also provide thermal
mass to slow the heating of the sensor.

• Temperature gradients across the sensor package at the end of the preamp
warmup phase appear to be quite small (see Fig. 114).

It should be noted that while the temperature rates of change fall within the previously
described limits (current estimate of maximum temperature in sensor is 0.0004 K/sec),

improvements can be contemplated which would control these rates better. For example,

the model currently has the shaft connected directly to the center of the aluminum endcap

of the sensor module, essentially a worst-case solution. A set of Kevlar straps between
the shaft and the sensor could provide high stiffness with lower conductance. However,

such improvements, as well as better fidelity modeling of the inner structure of the
sensor, require more sensor design detail.

T_Dero±ure [_], Time = 1200 se_

Figure 114 Sensor temperature distribution at end of 20 min.
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INSTRUMENT ELECTRONICS OVERVIEW

The overall communication and control system for the experiment is shown below.

Minimum electronics beyond that already in the detector are added to provide a data
collection and status link to electronics mounted outside the vacuum chamber. The link

electronics on the detector is a battery-powered RS-232 to IR transceiver comprised of a

110 ° field of view IR emitter-detector pair driven by an IR encoder-decoder and linked to

an identical pair on the side of the chamber. The total power required for this portion of
the interface should be less than 100mW. Presently the electronics will need to run at -40

°C, but we will investigate if we can go lower.

The power and telemetry control box will be a comprised of a Book-sized PC with an

Ethernet interface to a procured telemetry radio, such as the Freewave FGR1115RE

900MHz spread spectrum radio. A small IR to RS-232 module provides the interface to
the IR transceiver inside the capsule. The externally mounted system will run from a

single +12VDC 85W power source. The unit is expected to occupy a volume of 40cm x
30cm x 25cm.

The gondola will contain a standard SIP module for ground communication and

control. We will need to provide an interface between the SIP telemetry interface and a

radio that links to the experiment. This interface will essentially be the same design as the

power and telemetry control box in the instrument.
Other means of communication within the capsule were considered, including a low

power 2.4 GHz radio link, and this option could be a viable alternative if the IR link is

not feasible. The major advantage to this approach would that the link does not depend on

position, and the Power wou!c! be about the same. ..........
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. 
SYSTEM REQUIREMENTS DEVELOPMENT 

Table 6 summarized key requirements of major subsystems derived thus far 

Amplifier noise (white) 

< 10-14 g,& NQ < 6~110' Brownian noise (white) 
radls 

T < I O K  
Temperature gradients < I O  I5 p p(AT/Ax) < - 
[Radiometer effect1 I I 7 ~ 1 0 ~ 1 " P a - K / m  
Acceleration noise inside < lo-" g CMRF < IO.' 
capsule in free fall 

Earth's gravity gradients 

Cryostat's gravity 
gradients 
[distributed mass) 
Gravity gradients of lump 
masses on b a r d  capsule 

< IO-12 g (2w) 
< IO-'' g (0) 

Centering of 
proof masses (6,) 
along spin axis 
within 1 p m  

< 10-1' g (2w) Centering of 
< g (w) proof masses 

within I O  um 
< 10.'' g (2w) Centering of 
< p (0) proof masses 

I - I within 10 pm 
Magnetic disturbances < 10-16 p I Use Niobium - 

alloy blanket 
around detector. 
Degauss proof 

masses 
Higher-order mass 
moments 

< lo-'" g Proof masses 
with almost equal 

moments of 
inertia (6M/M - 

6LL < IOJ) 
Zentrifugal gradients due < I O  g Centering of 
:o skewed spin axis proof masses 

S , s l p m  

. Design Drive 

NIA 

NIA 

LHe cryostat 

TBD 

Pressure inside 
capsule 

p, < IO-" mBar 
NIA 

Cryostat internal 
diameter2 I m 

NIA 

Temperature of 
package 
T < T c  

(T, = critical 
temperature) 

Mass of cryostat 
< 500 kg, 

Intern. dia. 2 I m 

NIA 

Low-speed 
ballistic coeff. 

fi0 > 5000 kg/m' 
NIA 

NIA 

NIA 

Structural and 
attitude 

freqs. >> w 
Verticality before 

release 
jX@ < 0.1 pm-deg 

N!A 

Mass-distance 
exclusion zones 
(see m. 53-54) 
Limit magnetic 

moments outside 
sensor package 

M, < TBD A-m' 
and r > TBD m 

NIA 

v'erticality within 
0.1 O ;  rate errors 

at release 
$0.1 "Is 

w = signal angular frequency; w ~ ,  = detector resonant angular frequency 
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EXPERIMENTAL ACTIVITY (IFSWCNR) ' 
Our partners have been working very hard in carrying out experimental activity on 

critical aspects of the detector development. The team at the Institute of Space Physics 
(IFSIKNR) has already built a differential accelerometer prototype and carried out 
significant laboratory measurements on the prototype. 

The prototype was designed with the goal of exploring key aspects of a differential 
accelerometer and not for carrying out a preliminary test of the Equivalence Principle in 
the laboratory. As such, the prototype has two sensing masses of the same material with 
their centers of masses close together but not perfectly coincident. The prototype has 
several features in common with the instrument that we expect to develop for the flight 
experiment as follow: same capacitive pick-up system; same elastic suspension of the 
sensing masses; same measurement chain to extract the differential signal from the 
accelerometer. 

Figure 116 and Figure 117 show schematics of the differential accelerometer 
prototype. Each sensing mass (bluc and orange elements in the figure) is shaped to 
compenetrate (with lecway) into the opposing one so as to bring the two CMs closc 
together (perfcct coincidence is not a requisite for this prototype). 

Figure 116 Exploded view of differential accelerometer prototype 

Section contributed by V. Iafolla S Nozzoli and M. Fiorcnza of IFSllCNR funded through Italian Space I 

Agency (ASI). 
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Pivot axis mass I Pivot axis mass 2 

Sensitive 
axis 

Spin axis 

Figure 117 Cross section of (assembled) differential accelerometer prototype 

Figure 118 Simplified electrical diagram of signal pick-ups 

Each sensing mass can rotate (through elastic restraints) about the pivot axis on each 
side of the accelerometer. The two pivot axes are parallel to onc another. The sensitive 
axis of the differential accelerometer is perpendicular to the pivot axes and to the 
lon_eitudinal axis of the instrument (spin axis). Each sensing mass has two fixed 
capacitor plates for signal pickup. 
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Figure 119 Pictures of differential accelerometer prototype
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Theoutput signals of the sensing masses are independently amplified and sent to the

data acquisition system for conditioning, filtering and comparing. This prototype
differential accelerometer builds on the heritage of (single) high-sensitivity

accelerometers that were built at IFSI through the years. These accelerometers were

tested extensively in the laboratory and in the field .... . Key characteristics of the

differential accelerometer prototype are summarized in Table 7.

Table 7 Key characteristics of differential accelerometer prototype

Item

Sensing mass

Quality factor

Resonance frequency

Preamplifier noise temp. (K)

Preamplifier type

0.22 kg

2900

18.12 Hz

0.76

AD743 (commercial)

20

m

10

-10

Istituto di F_ica dello Spazio Interplanetario
-13It StalJon Gran Sasso, Italy

-20 ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
time (day)

Figure 120 Luni-solar tide signal filtered with 49-hour filter (1 mas = 2.78x10 7 g) and

measured with single accelerometer in August 1998.
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The singleaccelerometer,in its various implementations,has demonstrateda
remarkablesensitivityandrepeatability. The accelerometerwasableto resolvea
modulatedgravitysignal(at0.3Hz)witha strengthof lessthan10 -9 g in the presence of

seismic noise. Another single accelerometer is used to measure the Luni-Solar tides

(working as a tilt meter) in the Gran Sasso laboratory (Italy). Excellent tidal signal over

periods of months have been measured by the IFSI team. A month-long sample of a

Luni-Solar tide in August 1998 is shown in Figure 120 as an example of the performance
of the single accelerometer in the field.

Damping of transient oscillations

The differential accelerometer prototype was developed and built to test, among
others, key aspects of differential acceleration measurements as follows: (a) abatement of

the natural dynamics excited by the instrument release into the capsule; and (b) rejection

of the common-mode signals. Point (a) above is critical for the success of our

experimental scheme. For an instrument that is required to resolve acceleration of l0 -14 g,

the release is an abrupt event that pushes the detector well beyond its saturation point.
Moreover, in a (flight) instrument with a Quality factor (Q) of order 105 and a resonance

frequency of a few Hz, the transient oscillations would take a very long time to decay to
within the instrument's dynamic range. The strategy that we plan to follow in the

experiment is to reduce the Q factor during the first few seconds of fall from 105 down to

a few units. The reduction of the Q factor is accomplished by inserting a resistance in the

feedback control loops of the accelerometer (see Fig. 121). The technique has been
tested successfully on the prototype accelerometer.

PROOF AMASS

Vo + v"sin _aOt

S

#
Figure 121 Electrical diagram of one test mass pickup system with resistance added to
the feedback loop

Figure 122 shows the oscillation amplitude (from the oscilloscope output) of the

accelerometer after an excitation. The accelerometer has a resonant frequency of 18.5 Hz
and an (undamped) Q, = 2900. The introduction of a 50 Mohm resistive load in the

feedback loop, reduces the Q from its undamped value to Q,' = 441 and, consequently,
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the oscillationamplitudedecaysmuchmorerapidly. Subsequently,theresistanceis
removedto demonstratethatthisoperationdoesnotre-excitetheoscillationamplitude.

A

V

I_gn itude
(Linear)

e

X 6.7'5 Y 9.13qt_8 Tisee

" re.iv=50 s Qt= ::29()O

]"auV=7:) s- Qt=441 .............

Figure 122 Oscillation amplitude decay vs. time with and without resistance inserted in
the feedback loop

It is worth reminding that the decay of the proof mass oscillations is driven by the
total quality factor of the electro-mechanical system which is as follows:

1 1 1 1 _ooRC
=m+__ with --=_ (70)

Qt Q,n Qe Qe 1+ (to0RC) 2

where Z, is the electro-mechanical coupling factor

CE 2

9
mto6

that is the ratio of electrical energy to mechanical energy of the oscillator. The electro-

mechanical coupling factor of the instrument prototype is a low )_ = 0.01. The flight

instrument will have a value much closer to unity thanks to a lower value of too and

higher value of the capacitance C. Consequently, an electrical resistance of the value

adopted for this test coupled into the feed-back loop of the flight instrument will imply a

reduction of the value of Q, to a few units. In summary, this damping technique is able to
provide the desired damping performance.
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Common-mode rejection factor 

One important characteristic of a differential accelerometer is its ability to reject 
perturbations that are not differential, i.e., common-mode disturbances. This ability is 
quantified by the common-mode rejection factor (CMRF). 

Figure 123 Experimental setup to perturb differcntial accelerometer with periodic 
common-mode disturbances. 
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TheIFSI laboratoryhasbuilt arotatingsystemwhoserotationaxiscanbeaccurately
tilted off thevertical(seeFig. 123).Theaccelerometeris mountedinsidetherotating
devicewith thesensitiveaxisorthogonalto thespinaxis. Therotatingoutfit is tiltedby
about103rad away from the vertical and spun at a slow rotation with a frequency of 0.15

Hz. As the differential accelerometer slowly rotates, it measures a small component
(proportional to the tilt) of the Earth's gravity field at the rotation frequency. This

perturbation is a common-mode disturbance which affects equally the two proof masses.

X 10 -3

1.5

e¢=

1

0.5

0

-0,5

-1

-1.5 I
413OO

Ao, I-- Ac2

(a)
51300 6000 7000 8_ 9000 1_

Time (0.05 sec)

x 10 "e
1.E;

I...........DillI

1 ............... _ ............... _ ............... i................ "............... _ ...............

: i
05 _ _ : _'_ : :

" -- --_- -"i • ! - _- - -_--:-!_ _, • .... _'_!_--_'I! ...... ."- ........._'. :! _i_..............| : iti ......................................." I _ :

_'_ ; , _,,: :: ., _:_ ! , ::! ! _ .. _ _ :: !! ,,_" _h_ _ , _,: : _!:: : , : : _ :,, ,,.:.,

-o 5 I-- .... 4 ......... "---_k ....... '---" ............... '............. J!___:............... - ...............
/

-1[ i i i ii"............... ':"............... ::................ i............... _...............(b)
-1 _ 5000 6000 7000 8000 9000 1131300

Time (0.1_5 sec)

Figure 124 Accelerometer outputs: (a) single acceleration from proof mass 1 and 2 and
(b) differential acceleration.

The differential output generated by the calibration signal is then treated by the

software through spectral analysis of the individual signals to adjust the proportionality
factors of the two sensing masses and the phase differences of their responses.
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Figure 125 Spectra of individual and differential acceleration outputs: (a) after

amplitude calibration only and (b) after amplitude and phase calibration.

Figure 125 shows that after calibrating for amplitude and phase a 10 4 attenuation is

readily obtained for the differential signal. This level of attenuation is effective not only

at the perturbation frequency of 0.15 Hz but also over a larger frequency band. An

attenuation of 10 4 or equivalently a common-mode rejection factor of 10 -4 meets the

present requirement on the CMRF for the proposed tests of the Equivalence Principle.
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Concluding Remarks

The laboratory activity consisted in the construction of a laboratory prototype of a

differential accelerometer. The laboratory prototype has been used to conduct key tests

on the differential instrument. The team at IFSI demonstrated the ability of the detector

to damp quickly transient oscillations by utilizing a resistive load in the feedback loops

and then removing that load to reestablish a high quality factor of the detector. A rotating

device with tilt control was also built at IFSI. This device was utilized to impart (through

the Earth's gravity) common-mode perturbations to the differential accelerometer. These

calibration disturbances have been used to trim the acceleration outputs of the individual

proof masses in order to obtain a common-mode rejection factor better than 10 -4 in a

sufficiently large frequency band centered at the spin frequency.
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